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it would be desirable to have a direct measure of
the K cascade time in liquid helium to further
pin down the cascade mechanism and to give more
direct evidence on the question of the angular mo-
mentum states from which R are absorbed.
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In a recent Letter, Geshkenbein and Ioffe' have
derived an upper bound on coupling constants, i.e.,
the mass-shell value of three-leg vertices. Their
form of bound is remarkable in comparison to
previous results' because it depends only on the
masses of the three particles involved, and not
on the nature and range of the forces between the
particles or on the nonexistence of stable states
in other (crossed) channels. In the present com-
munication we conclude that an assumption on
which the G-I bound is based (namely, that the
proper vertex function has no pole) has no direct
(i.e. , phenomenological) physical significance,
and hence that their bound on coupling constants
likewise has no direct physical significance.

%e recapitulate briefly their argument: The
propagator of a spinless boson a has the represen-
tation

tion constant, should be nonnegative; this imposes
the condition

fp ds& I-Qc. &1. (2)

The spectral weight p(s) is a linear combination
of positive definite terms, each contributed by a
state into which particle a can transform (con-
serving everything except energy). The contri-
bution to p of a two-body state consisting of par-
ticles b and c is ](s}g'[I'(s) i', where g(s) is a
phase-space factor, g is the abc coupling constant,
and I' is the proper vertex part (as defined in re-
normalized field theory) of the abc vertex, nor-
malized to unity on the mass shell, i.e. , I (m ')
= 1. This implies the inequality p) ((s)g'l I" i',
which, used in Eq. (2), leads to

G '=(s-m ') 1+(s-m ') Q
Q a s. -s

ds'p(s')
(s'- m ')'(s'- s - ic)

with c; -0. In the limit of infinite energy, G
= Zs, where Z, the propagator renormaliza-

where
ds((s} II'I'

(s-m ') '

a

If a lower limit can be put on 4, we have an upper
limit on g2.

6-I show that 4 does have a minimum value, if
it is assumed that I" has no singularities on the
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G= ', -„il""s- &pe J s'- s'a" (4)

where the spectral weight is a sum over inter-
mediate states,

g ~Q & (s}I (n I g 10) I'.

The weight o of Eq. (4} is obviously related to
the weight p of Eq. (1) by v = p [G i'. If G has a
zero, at s = s„when g does not, then p is singu-
lar: In particular, if the bc contribution to g is
not zero at s =s„ then I" has a pole there. Now

if in a given model the KKlldn-Lehmann repre-
sentation exists, the propagator exists, with
limit G = 1/Zs with Z ) 0; no consideration
of the representation of the reciprocal of the
propagator, Eq. (1), is going to change this con-
clusion. Hence if, for a particular case, we as-
sume that the Kh.lldn-I. ehmann representation
Eq. (4) exists, the G-I bound on the coupling may
be violated, simply because G has a zero, and
hence I" a pole.

We exhibit explicitly this failure of the G-I ar-
gument for nonrelativistic elastic models. Writ-
ing k for the relative momentum of particles b
and c, our notation for the abc coupling constant
and for the binding energy of particle a below the

physical sheet besides its right-hand cut, s ~ (m b
+mc)'. G-I did consider that I" might have a pole,
noting that if Q has a zero at the same point GI
will be nonsingular (for the significance of this,
see below); but they rejected this possibility, on
the grounds that such a pole would correspond to
a bound state of particles 5 and c. They also
remarked that this pole will appear in the scatter-
ing amplitude of particles 5 and c through the ir-
reducible contribution of particle a as intermediate
state: g'I"GI'. Here we shall argue that such a
pole of 1" has, in fact, no direct physical signifi-
cance and does not appear in the scattering am-
plitude. [The pole of g'I'GI' due to the pole of I'
is actually a "ghost, " i.e. , its residue has the
wrong sign for it to represent a bound state. ] We
shall first show that it is natural, when the cou-
pling is strong, for G to have a zero, hence I' to
have a pole there, thus allowing the 0-I bound

to be violated. We shall then explain from the
point of view of "dynamics" how the proper ver-
tex part can have a pole, and how the consequent
pole of g'I GI is canceled from the Q-c scattering
amplitude.

We start from the original KKlldn-Lehmann
representation of the propagator of particle a.'

6-c threshold is defined by saying that in the 5-c
scattering amplitude f, the pole term due to par-
ticle a isf+ =-P/(k'+y'). The vertex function
(bc I gu I 0) is a multiple of D '(k'), where D is the
Jost or "denominator" function'; D has no poles
and we assume D to have just one zero, at k'

The representation Eq. (4) becomes

1 2 k'
k'+y' v~ (k"-k'-fe}iD(k )i" (5)

where D is normalized so that [skaD]», = 1.
From (5) it follows that for the reciproca(of the
propagator we can write the equivalent of Eq. (1):

G '=(k'+ ') I+(k'+ ') Qy a.'-k'

dk'k'"
+ p

— (6)
(k"+ ')'(k" - k')

where I = 1/GD. If it is assumed that I' has no

poles, the G-I bound follows: P &4y.
From (5) it follows that G& 0 for k'(-y', and

that for -y'&k'(0 G monotonically decreases
from +~; hence the criterion for a zero of G is
whether G is negative at threshold. For example,
if we evaluate 5 at threshold using the zero-
range approximation for D (for small y this should
give a good approximation for the integral), we
find

G(0}=-.--f1 2 dk 1 I' P
i2y(y+fk) i' y'i

Thus in this approximation 6 acquires a zero on
the physical sheet when P ) 4y, i.e. , precisely
when the 0-I bound is violated.

We digress briefly to note that if the interaction
between particles Q and c is purely through a non-
singular potential, then 5 (~) - 5 (0) = -v (Levinson's
theorem) so D =const and the Kalian-Leh-
mann representation Eq. (5) does not exist, un-
less one makes a subtraction at infinity. The
resulting "propagator" monotonically decreases
from +~ to -~ as k' goes from -~ to 0, and thus
has a zero in this region of k'. The position of
this zero depends on the choice of the subtraction
and plays the same role of arbitrary constant in
representation Eq. (6) of G ' as does the subtrac-
tion constant in the representation of "Q." Since
"G" always has a zero in the case of potential
scattering, the G-I argument never applies. 4

If, compared to the potential case, the 5-c scat-
tering amplitude f has "extra" poles in the lower-
half k plane (unphysical k' sheet), then D will have
additional factors (k - k;), and the representation
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for G [Eq. (5)] will exist. As the simplest ex-
ample, we can consider the case that f has just
two poles, namely the bound-state pole and one
extra pole, on the negative imaginary k axis; then

f= - (cp - y)/(y - ik) (y - ik) and D = (y +ik)(y - ik)/
2y(y +y), and we find P = 2y(y -y)/(rp +y) and G
= (y +y}/ 2y(y - fk)(y+ik} T. his case is apparently
too simple: P never exceeds 2y and G never has
a zero. The next most simple model has a "left-
hand" (potential) pole in addition:

D= 2y(u+y) (r+fk)4 -fk). ~+r 9 -r
so P =2y9+r ( -fk} ' ~y V+y

and

one or more times. The pole of the second term
at a&, remarked by G-I, just cancels the pole of

fI& there, thus removing this unphysical pole from
the complete scattering amplitude.

The foregoing can be immediately exhibited in
the nonrelativistic elastic models: For instance,
in the model of Eq. (8), if we take the "extra pole"
to infinity, y - ~ (i.e. , we remove the elementary
particle), but keep the residue at k =ig fixed (i. e.,
we keep the same potential interaction between g

and c}, then we find that the bound state moves
to y~= (spy - p')/(y -y), which is precisely the
location of the zero of G. In fact, we can write
generally

V+r v'- vr ik(-rp - y)
2y(g -y ) (y+ik)(y-ik) (8)

G =D /D& (10)

This 6 has a zero, which is in the upper-half A

plane (physical k' sheet} when y& p'y ', i.e. , P
&Pc =-2y(p+y)'/(g'+y'). Note that in accordance
with G-I, Pc ~4y.

Having seen that from a dispersion theory stand-
point there is nothing surprising about a zero of
G, and hence a pole of l", we would now like to
discuss the significance and origin of such a pole
from a dynamical point of view. The first point
to make clear is that in order to define a unique'
I' and G, and Lagrangian of the theory must con-
tain an elementary particle, a', in the a channel
(one of the components of the physical particle a
is a'). The proper vertex function I' is then well
defined: It is the (suitably renormalized) sum of
all three-leg graphs except those in which a' oc-
curs as an intermediate state in the g channel.
It follows that I' is proportional to D~ ', where
D& is the denominator function for 5-c scattering
in the case that a' is omitted as an intermediate
state in the a channel (the subscript P stands for
"potential, " the sole interaction between b and c,
where by "potential" interaction we mean exchange
of particles: Even when omitted in the a channel,
a' in the crossed channels may still contribute to
the "potential" interaction}. Hence I' will have
a pole if the "potential" interaction binds 5 and c
into a stable state. This state, call it ap, is,
of course, not a physical state, because a', when
reintroduced into the a channel, will mix with
and shift a~ to the physical state g.

The 5-c scattering amplitude can be written

f=f~+g'rGr,

where the second term on the right contains the
terms in which a' occurs as an intermediate state

where Dp is the denominator function of fp, nor
malized to Dp(k =iy) = 1, where fp has the same
left-hand singularities as f, [Imfp]lh = [Imf]lh,
but has no extra poles, whereas f has a pair of
extra poles. ' Equation (10) exhibits the fact that

where'& has poles (dynamical bound states}, G

has zeros. Equation (10) is proved as follows':
From Eq. (10) we would have

D ImD -D ImO

ID I'

= -(k/ ID l') (DN - D N).

The last factor of this, DNp - DpN, is an entire
function, because it has no singularities; from
the asymptotic behavior of the D's and N's it fol-
lows that it is a constant, and from the normali-
zation of the D's it follows that it equals P. Corn-
paring Eq. (11) with Eq. (5), we see that the form
Eq. (10) for G has the correct imaginary part,
and it has the correct poles according to the as-
sumption made above that D has only one zero.

Our conclusion is that the only significance of
the 6-I bound on a coupling constant is the follow-
ing: The bound is violated only if the "potential"
interaction binds a stable state in the channel a
in the absence of an elementary particle a' in
that channel.

Of course, if the bound is not violated, we can
say nothing.
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In the case of potential scattering, a limit can be put
on the coupling constant only if sufficient information
about the left-hand cut of the scattering amplitude is
given, and then one gets both upper and lower bounds.
For instance, if it is given that the nearest left-hand
singularity of the b-c scattering amplitude is at k =-p
and that Imf & 0 as the negative k2 axis is approached
from above, then

2V &0 &2H +V)/'0 -V)

~I.e. , in contrast to the case of purely potential inter-
action, discussed above.

~That is, Eq. (10) applies to the case that there is one
elementary particle in the a channel. If f had more than
one pair of extra poles, i.e. , there were more than one
elementary particle in channel a, there would be more
than one G, of a more complicated form than Eq. (10).
It also might be remarked that the situation in the model
of Eq. (8), where one of a pair of extra poles is at in-
finity, is the limiting case Z = 0.

~One can prove the same formula in the relativistic
case, and thus establish the comments in the preceding
paragraph about Eq. (9}. Of course f will, in general,
not be a truly physical amplitude, because it will not
satisfy crossing if a' can be exchanged between b and c.
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The very appealing idea that the elementary
particles are a manifestation of the invariance
of the strong intersections under the action of
higher rank groups has had some success in the
use of the simple second-rank Lie group SUB.
SU~ has been applied to three different features
of the elementary particles: (i) as a classifica-
tion scheme, since by appropriate grouping the
present knowledge can be fitted by representa-
tions having dimensions of 1, 8, and 10 with the
appropriate spin and parity assignments~ 5;

(ii) to provide a reasonable interpretation of the
mass splitting within a multiplet as the action
of a symmetry-breaking interaction which trans-
forms as a tensor operator under the action of
the group ~' ', and (iii) using the assignment of
strongly interacting particles to representations
of SUB, to obtain partial widths for the two-body
decays of the known resonances which are com-
patible with experiment.

However, despite the success of SU~ in the
domain of the strong interactions, if we assume
that the weak vector currents are conserved in
the presence of the symmetric strong interac-
tions, ~ye we find that SU3 forbids Ee3 decays
with hQ = -bS, '~ in disagreement with the re-
sults of Ely et al. On the other hand, another
simple Lie group, G„predicts the existence
of X 3 decays with hQ = -M. With this qualita-
tive success as our motivation, we have ex-
plored the implications of 62 for the strong in-
teractions, with special emphasis on those points

for which SUS has been considered successful.
%e find that except for two crucial experimental
results, G~ is compatible with the present ex-
perimental knowledge of the spectra of the strong-
ly interacting particles. These two experimental
results are the spin-parity assignment of the
1405-MeV Yo* resonance which has been tenta-
tively identified~I as 1/2 and which Gm requires
to be 3/2+, and the isotopic-spin assignment of
the 1530-MeV =* resonance which has been
identified~' as T =1/2 and which G~ requires to
be T=3/2. "

The predictions of G~ differ significantly from
those of SU~ only within the region of the reso-
nances. In order to put G~ to the experimental
test, we list its predictions in Table I and, for
comparison, those of SUS in Table II.

The dimensionalities of the representations
of G, are N =1,7, 14, 27, ~ ~ ~ . Only the 1, 7,
and 14 dimensional representations are needed
to fit the present experimental data while for
SU~ those needed are 1, 8, and 10. In the first
column of each of the Tables I and II, we have
listed, for the lowest lying levels, "the baryon
multiplet assignments BJI+ where the super-
script is the dimensionality of the representa-
tion, N, and the subscripts, the spin-parity
assignment. In the second column is the usual
notation for these states. These multiplet as-
signments are, of course, predictions of the
model: They predict the number of states in
the multiplet, their isotopic spin and hyper-


