
ig
~ Ai& ii 4 ~a

Vox.UME 11 15 SEPTEMBER 1.')6) NUMBER 6

COOPERATIVE MOTION OF HARD DISKS LEADING TO MELTING
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None of the approximate integral equations' '
for the radial distribution function has yet given
any insight into the observed' hard-sphere and
hard-disk phase transitions. Only the integral
equations based on the superposition approxima-
tion have been shown to give singularities in the
hard-sphere equation of state, but the connection
between the singularities and the phase transition
has not been established.

On the other hand, some insight into the hard-
disk phase transition can be gained by study of
the computer-generated oscilloscope traces of
disk trajectories in the two-phase region. These
pictures suggest that an important feature of the
cooperative motion leading to melting is the slid-
ing of rows of particles past each other. This
sliding motion is incorporated into a simple model
and is shown to lead to a phase transition for disks
at approximately the right pressure and density.
Furthermore, this model leads to an accurate
description of the solid phase of disks near close
packing. Finally, the model suggests that, for
particles which do not have a hard core, a solid-
fluid critical point will be observed.

In previous models of the solid phase' a central
particle is allowed to wander in a cell in which
the neighbors are strictly confined to lattice po-
sitions. This is illustrated in Fig. 1 for hard
disks; the free area, af, accessible to the center
of the wanderer is the central cross-hatched re-
gion. In this model the probability density in con-
figuration space is expressed as a product of
single-particle probability densities'; that is, the

motions of neighboring particles are uncorrelated.
The other extreme, treated here, in which some

neighboring particles are perfectly correlated will
also lead to a theory of the cell type, as shown in
Fig. 1. The unit crystallographic cell of the hex-
agonal lattice (dashed rectangle) can be thought of
as containing two kinds of particles, both of which
are periodically repeated. One kind of particle
(open circles) includes the central wanderer and
some of its correlated neighbors. These move
in unison (indicated by arrows) relative to the
other kind of neighboring particle (cross-hatched

FIG. 1. Configurations of the cell of elastic disks.
The shaded particles are fixed. Free areas available
to the central wanderer are showa.
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circles) which are fixed at lattice positions. Con-
sidering the lattice to be generated by a single
unit cell with periodic boundary conditions, so
that identical motion occurs in each cell, the co-
operative behavior corresponds to one sublattice
(in this case a row of atoms) sliding relative to
another sublattice. This correlated cell model
is, of course, unrealistic because the perfect
correlation of neighbors does not, in fact, extend
over an infinite range but, as suggested by the
oscilloscope pictures, only over some ten par-
ticle diameters. Nevertheless, the model de-
scribes the solid phase quite accurately; it is not
expected to describe the fluid phase.

The correlated cell-model free area (central
diamond shape region) is larger than the ordinary
cell-model free area, as shown in Fig. 1. For
the correlated cell model,
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where d is the nearest-neighbor distance relative
to the particle diameter 0. The equation of state
obtained from

Ia/fvt T = e(i~)/a(iw) = s(i~)/s(iw')

is shown in Fig. 2. At d'= —, the functional form
of ap changes since at that point rows can slide
past each other. The free area for d'&'-, is in-
dicated in Fig. 1 by the larger central diamond-
shaped region with cutoff corners. The expres-
sion for it is merely the first three terms of Eq.
(l). At low densities, the definition of af depends
explicitly upon boundary conditions, which here
have been taken such that the central particle is
confined to the area per particle.

It should be pointed out that the portion of the
equation of state with a positive (ap/sA)& which
leads to the first-order phase transition by the
Maxwell construction is obtained entirely from
Eq. (l), and hence is not an artifact due to the
sudden appearance of new regions accessible to
the wanderers. In fact, a number of similar
models have similar characteristic equations of
state. As examples, a two-dimensional square
lattice in which the wanderer is confined by four
stationary particles at the corner of a square ex-
hibits a phase transition near twice the close-
packed area, and a hexagonal lattice which has
arbitrarily three alternate neighboring particles
correlated with the central particle exhibits a

FIG. 2. The equation of state of elastic disks in the
phase-transition region. A/Ap is the area relative to
the close-packed area, Ap, Light solid line, molecular
dynamics; dashed line, ordinary cell model; heavy solid
line, correlated cell model; dash-dot line, correlated
cell model with a repulsive potential falling off as the
inverse 100th power of the distance.

phase transition very similar to the case previous-
ly treated where two neighbors were correlated.
In the case of three correlated neighbors, the
lattice is generated by a box w ith periodic bound-
ary conditions containing six particles (three unit
cells wide). These six atoms are not all independ-
ent but subdivided into two stationary particles
(the one at the center and the ones in the corners)
and four correlated ones. Sliding of rows is quite
feasible in this model also, If the six atoms had
been treated as all uncorrelated, a phase transi-
tion would not likely be observed, since boxes
containing four or twelve independent particles
did not lead to one' by molecular dynamics com-
puter calculations. The reason for this is that
density fluctuations are so restricted in such sys-
tems that the probability of parallel sliding of rows
is drastically reduced at the density of the phase
transition.

In the limit of close packing, the correlated cell-
model isotherm reduces to the ordinary cell-mod-
el isotherm which has been shown to be exact for
finite systems. Presuming that away from close
packing, the equation of state can be expanded in
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a =A/A, -1, as

PA/NAT = (2/n)+C, +C,a+C,a'+ ~ ~ ~,

the value of C, for the ordinary cell model is 9'

=1.56, for the correlated cell model &9=1.89,
while the molecular dynamic result gives 1.86
+ 0. 03 for either 72 or 870 particles. The values
of C, are -~ =-0.086, 8', =0.765, and 0.9+ 0. 2,
respectively. This quantitative success of the
correlated cell model near close packing, as well
as in the phase transition, as shown in Fig. 2, in-
dicates its general validity in the high-density re-
gion. Figure 2 also shows that for a very steep
inverse power-law repulsive potential of the form
kT(g/r)'" the phase transition disappears. Also,
no phase transition was obtained when the repul-
sive power was four or twelve. For these poten-
tials the integral occurring in the free area of the
cooperative cell model was evaluated numerically.
A study now in progress involving other potentials,

further models, and three-dimensional systems
should help answer the question whether the mech-
anism of melting in real systems is similar to
that of elastic disks.
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Photoemissive studies may give detailed infor-
mation concerning optical transitions in solids.
In particular, the absolute energy of the initial
and final states involved in the optical transition
can be deduced from the distribution in energy
of the emitted electron. Results in good agree-
ment with theory have been obtained from Si.~
Since optical transitions between valence- and
conduction-band states depend on both the energy-
band structure and the optical selection rules,
photoemission has been used here to obtain infor-
mation concerning both of these quantities. In Si,
in spectral regions of high absorption coefficient
and photoemissive yield, only transitions in which
k is directly conserved are of importance. '&' It
is the purpose of this Letter to report and dis-
cuss data in which no evidence for a selection
rule requiring the conservation of k was found.
The valence-band structure of the materials
studied has also been deduced and related to the
atomic spin-orbit splitting.

The materials reported on here are L4-VB com-
pounds, Cs~Bi, Cs~Sb, NaPCSb, K Sb, and Rb~Sb
which have been rather extensively studied. ~ '
It has been established that photoemission from

these materials is a bulk process. It has also
been shown that in many of them a large percent-
age of the optical transitions produce photoelec-
trons. The experimental techniques used have
been described elsewhere. '

If the energy distribution produced by photons
of energy hv (see Fig. 1) is plotted against the
energy of the electron in vacuum, E, minus hv,
the distribution is referred to the valence-band
states, at energy E, from which it was exc ited.
If only direct optical transitions are important,
the energy of the valence-band state from which
the electron is excited will change with hv. As a
result, a change in hv cannot produce an equal
change in E if the valence band has finite width. ~

Only if the valence band is flat with negligible
width or if the conservation of k is not an impor-
tant optical selection rule, will ~ = b'av. Under
these conditions structure in the energy distribu-
tion due to the valence band will fall at the sa.me
place when the energy distributions for various
values of hv are plotted versus E =E -hv.

V
In Fig. 1, experimental energy distributions

obtained from Ca~Bi are plotted versus E&. For
the sake of comparison, the curves obtained for


