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PROTON-PROTON SCATTERING AND STRONG INTERACTIONS*

Alan D. Krischt
Laboratory of Nuclear Studies, Cornell University, Ithaca, Ne~ York
(Received 5 June 1963; revised manuscript received 9 August 1963)

There has recently been considerable interest
in the high-energy differential cross section of
strongly interacting particles. We will show
that for proton-proton scattering the existing
data can be fit by a simple function which can
be understood in terms of a simple model.

We consider the differential cross section for
elastic proton-proton scattering, which is nor-
malized according to

dv/dt dv/dQXs, t =

dv/dt l dv/dQ I

where dv/dO P =kmv 2/16m . It is known

experimentally that X depends on both the center-
of-mass energy squared, s, and the four-mo-
mentum transfer squared, t. We would like to
find a single parameter which contains most of
this dependence. Now notice that since the two
protons are identical, this cross section must
be invariant under a 180' rotation in the center-
of-mass system. Thus we look for a, parameter
which is invariant under this rota, tion. Such a
parameter is the transverse momentum, pz
=p sin&. Consequently we define the variable

7. =p san 6I. (2)

Notice that 7 is invariant under a transformation
from the laboratory to center-of-mass system.
The transverse momentum is also thought to be
an important variable in the production of second-
ary particles by high-energy cosmic rays. For
small -t, ~ is essentially equal to -t. However,
for large -t, it is smaller than -t, especially
for small values of s -4m2. 7 attains its maximum
value, rmax = &(s - 4m') = p ~, for 90' scattering,
when t = u -q(s - 4m').

One now proceeds by considering all available
experimental data for proton-proton scattering
above 10 GeV, ' and determining the value of 7.

for each point from Eq. (3). These data are
then plotted in Fig. 1. It is interesting to note
that the shrinkage with increasing energy, seen
in graphs of X(s, t) vs t, now seems to be re--

Note that 7 can be written in terms of the Mandel-
stam variables as

T = tu/(s —4m') = -t[I + t/(s —4m') j.
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duced, roughly by a factor of two. There is
also less curvature in the diffraction peaks than
is seen in plots of X against t. These are con-
sequences of the fact that for fixed t, T(t, s) in-
creases with increasing s. If we ignore the re-
maining s dependence, Fig. 1 can be fit by a
rather simple sum of two exponentials in 7,

X(s, T) =0.999e ' +0.001 e
' . (4)

Lower energy proton-proton scattering data2
down to 1 GeV can also be fit rather well by ex-
ponentials in T. The coefficients, however,
are s dependent. There may also be some in-
terference between the two terms where they
cross at 7 =1.25 (GeV/c)2. However, the ex-
istence or nature of any interference is of little
consequence outside the region 1.0 & T & 1.5, and
the present experimental data in this region are
not sufficient to determine the nature of any in-

FIG. 1. Normalized differential cross section for
elastic proton-proton scattering X{s,7) vs v, the trans-
verse momentum squared in units of (GeV/c) . Some s
values are sholem in units of (GeV) . Equation (4) is
plotted.
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1
f(z) = —. Q(2n+1)P (z)[b exp(2i5 )-1],

ik n n nn=O
(6)

where z =cosd. The absorption coefficient is
defined to be k„=exp(-y„), where y„ is twice
the imaginary part of the phase shift. Now we

multiply both sides of (6) by J dzP&(z) to ob-
tain

J
1 1
dzP (z)f(z) = —. Q (2n+1)[b exp(2i5 )-1]

-x l n n

terference that may exist. Thus it is possible
that (4) should be replaced by the interference
equation which has the same behavior for large
and small v. ,

( ) 0 84[
-4. 3157 10-1.5 -1.035 7 ]2 (5)

It is interesting to see what can be learned
about the structure of the proton from the dif-
ferential scattering cross section. We will
make a phase-shift analysis which involves a
Legendre transformation of the scattering
amplitude to extract this information.

The scattering amplitude for identical spin-
less particles may be expanded in terms of
partial waves to obtain

One now proceeds by using either Eq. (4) or
(5) for X(s,r). The choice depends on the pos-
sible existence of interference between the two

exponentials. Then we obtain integrals of the
forms

I =f, dzP (z) exp(az'),
l j.

I =f,'dzP (z)[exp(az') +C exp(bz')]'".

These are not elementary integrals but they can
easily be done numerically by a computer. We
now normalize by noting that Otot 9' 3 mb and
that (4) and (5) seem to be good fits to the data
for k'8'=7 (GeV jc)'. It is then found that the
absorption coefficients are distributed as shown
in Fig. 2 where b& exp(2i6&)-1 is plotted against
/ for the following four cases: (a) when only the
large narrow diffraction peak, which we call the
v peak, is present [X(s, 7) =e-8 637]; (b) when

only the small broad peak, which we call the
core peak is present [X(s, 7) =10 3e 2 077];
(c) when both terms are present but do not in-

1
x P (z)P (z)dz.

-1 l n

Using the orthogonality relation

f 1 2
P, (z)P (z)dz =,l n 2l+1 nl'

(7)
.9

we have that

5 exp(2i6 ) - I = ,'i kf,'P (z)f(z—)«. (8)
OJ

4P
5

I

The scattering amplitude is related to the nor-
malized differential cross section by the equa-
tion

P(z) = (fko, ,j4z) [X(s,7)]'". .2

We have here assumed that the optical theorem
holds so that f(z) is purely imaginary. Putting
this into Eq. (8) we have a direct equation for
calculating the absorption coefficients, bl, from
the differential cross section.

k exp(2i5 ) —1

00
P (z)[X(s,P (1-z ))dz] ' . (10)

4 8 I2 I 6 20 24 28 32
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FIG. 2. Distribution of absorption coefficient
bI exp(2i5~)-1, as a function of angular momentum, l .
Four cases are shown. (a) the distribution due to the
core peak alone; (b) the distribution due to the 7I peak
alone; (c) the distribution due to the core peak and 7t

peak together assuming that there is no interference (4);
and (d) that there is interference (5). The 1-fermi mark
is shown. The prediction of Serber's Yukawa potential
is also plotted.
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terfere [Eq. (4)]; (d) when there is interference
between the w term and the core term (5). Notice
that there is no absorption for odd integers.
This is a consequence of the identity of the par-
ticles. The prediction of Serber's Yukawa po-
tentials is also plotted. %e can associate a
spatial size with these distributions by employ-
ing l =kr. The corresponding 1-fermi mark is
shown in Fig. 2. Such a spatial distribution
is useful in that it is reasonably energy inde-
pendent. In fact, changing the laboratory en-
ergy by a factor of four gives less than a 10$
change in the distribution.

Using the distributions in Fig. 2 and assuming
that 6~ =0, we can obtain the various cross sec-
tions associated with the different distributions.
These are given in Table I.

Perhaps the most interesting parameter which
can be obtained from this analysis is X&, which
is twice the imaginary part of the phase shift.
It is easily obtained from the distribution of
the 5 's by employing the relation y = -lnb& and

E

assuming that all the 6E are equal to zero. The
resulting distribution of

g&
vs E is plotted in

Fig. 3. Notice that the interferenee and no-
interference distributions are both much larger
near the center than a simple sum of the sep-
arate v and core distributions. This is a con-
sequence of the fact that a great deal of ab-
sorbing material is needed to increase the ab-
sorption from 0.90 to 0.999, while there is
only a 10 k increase in cross section. This ef-
fect results in some masking of the inner region
by the outer region, which leads to the core
having a very small cross section of 1.2 mb.
The importance of

g&
can be understood in terms

of the following simple model for strong inter-
actions, which is somewhat similar to one re-
cently proposed by Serber. e

0' 0'. 0'
total inelastic elastic

{millibarns) {millibarns) {millibarns)

Core

Interference
No interference

1.2
38. 1
39.3
39.3

1.2
29.4
29. 7
30.0

0. 04
8. 7
9.6
9.3

Table I. Cross sections calculated from the distribu-
tion of 5~'s given in Fig. 2. The core cross sections
are very small because of masking by the outer region.
Note also that the elastic core cross section is only
0.03 of the inelastic core cross section.

5)
No interference

Inter ference

4 S I 2 I6 20 24 2S
jI.

FIG. 3. Distribution of the imaginary part of the
phase shift, g&, as a function of angular momentum, /.
Four cases are shown: (a) core peak alone; (b) 7t peak
alone; (c) interference; and (d) no interference. For the
interference and no-interference cases gg is proportion-
al to the perpendicular interaction probability density.

Assume that in strong interactions all scat-
tering is caused by the inelastic or absorptive
channels, and that the strong elastic scatter-
ing is solely the diffraction scattering associated
with these channels. Next suppose that the
strong interaction can be characterized by an
"interaction probability density, "p(r), which
depends on the distance, r, between the centers
of the interacting particles and is mathematical-
ly similar to potentials which have been used
before. 3~~ Then the probability of an interac-
tion during the time that the distance between
the particles changes by dx is given by

dP =P(r)p(r)dx,

where x is the coordinate parallel to the motion
and P(r) is the probability that the particles do
not interact before reaching r. Then, for clas-
sical particles of impact parameter l/k, the
probability that there is no interaction at all is
given by

P(+")= exp[ f"p[( '+-f'/&')'"~). (»)
Now notice that P(+~) is just blm, the absorption
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coefficient, which in turn is equal to exp(-2xf).
Thus we have that

if p [(+2 + fR/yS)i/2 Qx (14)

Thus for an actual scattering yi &
is a meas-

ure of the "perpendicular interaction probability
density" for strong interactions which me call
pi(r). This seems to be fairly independent of
k if the shrinkage of the diffraction peak is ig-
nored. Note that pz(r) has units 1/cm~ rather
than 1/cms as a, true density. From the graph
of yi vs l, the perpendicular interaction proba-
bility density is seen to be strongly peaked near
the center. In this region, yi is very sensitive
to slight changes in X(s, T) so that the details of
the peaking are not reliable. Nevertheless

X&

= p~(~) seems to be large near the center. This
core region, which is associated with large-7
scattering, has thus far been seen only in p-p
scattering. It mould be interesting to see if
the core region were still present in n-p scat-
tering.

The concept and usefulness of the perpendic-
ular interaction probability density is rather
general and is independent of the model given
here to illustrate its importance. It may be
that the strong interaction distribution in the
perpendicular direction is of more fundamental
importance than was previously suspected. In

any case the perpendicular interaction proba-

bility density is all that one can obtain from
experiment without further assumptions about
the nature of the strong interactions.
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COHERENT PRODUCTION AS A MEANS OF DETERMINING THE SPIN AND PARITY OF BOSONS

S. M. Herman~ and S. D. Drell1
Stanford University, Stanford, California

(Received 24 June 1963)

Presently available machines allow the possi-
bility of studying the coherent reaction w (K) +A
—g~ (g~) +A, where 8 is an integer-spin parti-
cle or resonance and A is a nucleus of mass num-
ber A.

For coherence, i.e. , for the nucleus to remain
in its ground state, the minimum momentum
transfer at forward scattering angles must, not
exceed the reciprocal of the nuclear radius. This
puts a lower limit on the incident beam energy ~:

This means that for production of bosons of mass
m&~ 1.7 BeV the process is a kinematically pos-
sible reaction for CERN and AGS machines. An
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example of a coherent nuclear reaction is pro-
vided by the process y +A -m'+A which has been
observed (at lower energies) by Tollestrup et al.
and others. '

Our reason for considering the coherent proc-
ess is that in the allowable angular range a sin-
gle one of the 2J+1 states of the produced boson
is produced with much higher probability than
the other states. In many cases this leads to
unique statements about the angular distribution
of the decay products of B. Even in the cases
when unique statements cannot be made, certain
useful information can be established which can
be used to determine both the spin and parity of
B. Presumably the coherent process is identi-
fiable by its dependence on the mass number A


