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In this note we wish to raise some problems
connected with the analysis of the meson-baryon
resonances in the framework of “higher symme-
tries.” If such a symmetry does exist, it is
clearly “broken” in the physical world. The prob-
lems we shall discuss concern the nature of this
“brokenness,” jts effect on the resonances, and
the possibility of formulating it in a physical the-
ory. For concreteness we shall concentrate our
discussion on the octet version® of the symmetry
scheme based on the group SU,; however, most
of our remarks will be quite general and can be

adapted to the discussion of any symmetry scheme.

Let us begin by considering the meson-baryon
resonances in the octet model. It has been pro-
posed? that the resonances N,,*(1238 MeV),
Y,*(1385 MeV), and =,,*(1530 MeV), together
with a yet-to-be-found particle Q~ belong to the
10-dimensional representation (3, 0) of SU,.?

This identification assumes first of all that they
all have the same spin and parity (3/2%). The
fact that all these states do not have the same
mass is supposed to be the result of some sym-
metry-breaking interaction. It has been pointed
out® that if one assumes that the symmetry-break-
ing interactions have certain transformation prop-
erties and that they can be treated as a first-
order perturbation, then a “mass formula” can

be derived, which gives equal spacing of masses
for the 10-dimensional representation. For the
representation of SU, denoted by (p, g), this mass
formula is

M=a+bY - c{2I(1+1)-Ly2+%(p-q)y - Lp(p +2)
-3q(g+2)+5(p-9)%, 1)

where a is the symmetric mass and b and ¢ are
proportional to the strength of the symmetry-
breaking interaction. In fact, the proposed as-
signment of the resonances to the 10-dimensional
representation was partly based on this mass for-
mula, since the three observed levels N,,*(1238
MeV), v,*(1385 MeV), and =,,,*(1530 MeV) are
very nearly equally spaced.

To analyze the implications of the symmetry-
breaking interactions we shall adopt the view that
the meson-baryon resonances correspond to poles
in the complex total energy plane of the meson-
baryon scattering amplitude that has the appro-
priate quantum numbers. The observed mass
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splittings between the mesons and between the
baryons cause large separations between the
thresholds of various channels which are con-
nected with each other by strong interactions,
such as 7*p and K*=*. The positions of these
channel thresholds in the meson-baryon scatter-
ing system are given in Fig. 1. In these dia-
grams all known two-particle channels consistent
with the conservation of strangeness and isotopic
spin quantum numbers are included without refer-
ence to the possible existence of higher symme-
tries. (By a particle we mean a system stable
against decays due to strong interactions.)

The following questions now naturally arise:

(I) On which Riemann sheets are the poles that
represent the resonances located? We emphasize
that this question should be raised, independent
of whether higher symmetries exist or not.

(II) If one gradually switches off the symmetry-
breaking interactions, how do the thresholds and
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FIG. 1. Thresholds and positions of poles for some
meson-baryon scattering systems. Three-particle
channels are neglected. These diagrams are plotted
independent of the existence or nonexistence of ‘“ higher
symmetries”; however, isotopic-spin invariance is
assumed. The paths by which the resonance poles are
reached from the upper half complex energy plane are
indicated by arrows.
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the resonance poles move? What positions do
they finally assume when the symmetry-breaking
interactions are completely switched off? Can
one assume a linear dependence between the mass
of a resonance and the strength of the symmetry-
breaking interactions ?

(III) What is the criterion that a resonance pole
will belong to a pure representation in the pres-
ence of a symmetry-breaking interaction?

Concerning question (I) it is clear that for the
Na,z* resonance the pole is reached from the upper
half complex energy plane by a path passing be-
tween the 7p and K*=* thresholds. Any other
path would not lead to the observed peaking of the
n*p scattering cross section at the N,,* resonance
energy. The Y ,* pole is reached from the upper
half complex energy plane by passing between the
72 and KN thresholds. In this case the sheet
reached by passing between the A and 7Z thresh-
olds is ruled out because experimentally the de-
cay Y,* - A +7 causes a well-defined peaking in
the energy spectrum of the A system with prac-
tically all of the peak above the nZ threshold. The
Zy.* is reached by passing between the 7= and
KA thresholds. These paths are indicated by
arrows in Fig. 1. The conjectured particle @~
has been tentatively located so as to satisfy the
mass formula (1), which requires it to be a bound
state.

The arguments above that led to the location of
the poles on definite sheets do not preclude the
possible existence of additional poles in their
neighborhood on different sheets. We shall only
be concerned, however, with the poles identified
with the resonances and shall not consider these
additional poles.

To discuss question (II) let us imagine gradually
turning off the symmetry-breaking interaction.
We shall assume that the thresholds and the poles
move continuously as the symmetry-breaking in-
teraction is gradually switched off. In the octet
scheme of SU, symmetry all the mesons belong
to the same multiplet. So do all the baryons.
Therefore all the meson-baryon thresholds will
move toward a common energy E;. If the reso-
nances discussed above are in any approximate
sense in the same multiplet, their corresponding
poles must all move to the same (complex) ener-
gy Ep.

There are then the following possibilities:

(i) Ep is real<Ey, so that N,,*, V,*, Z,%, and
Q" all become bound states.

(ii) Ejp is complex, so that Ng,*, Y, *, %,
and @~ all become resonances.

(iii) Ep=Ey, so that N,,*, Y,*, Z,,* and Q~
all become zero-energy bound states.

Alternative (i) implies that in the case of the
Y ,*, the pole must change sheets. This can
happen if the pole either passes through the 72
threshold or moves clockwise around the thresh-
old, thus passing into the upper half of a Riemann
sheet far removed from the physical one and re-
turning to the lower half plane on another sheet.
If the pole passes directly through the 72 thresh-
old, it appears as a zero-width resonance in the
mA channel for some strength of the symmetry-
breaking interaction. This is not possible, in
general. Thus for some strength of the interac-
tion the Y ,* pole must move into a Riemann sheet
far removed from the physical one. Its effect on
the physical scattering amplitude would then not
be easily observable. If one accepts this behavior
one also must admit the possibility that for the
actual strength of the symmetry-breaking inter-
actions there are such difficult-to-observe poles
which must be included to complete various multi-
plets.

It should be emphasized that if such complicated
motion of the pole occurs, the validity of the line-
arity assumption leading to the mass formula re-
mains to be investigated. [See discussion below
concerning question (III). |

For alternative (ii) a similar discussion applies
since the N,,*, Y ,*, and =,,* poles must, re-
spectively, change sheets one, three, and three
times.

Alternative (iii) implies that each of the reso-
nances become zero-energy bound states when the
symmetry-breaking interaction is switched off.

It would be interesting to investigate the compati-
bility of each of the above alternative (i), (ii),
and (iii) with various dynamical models of the
N,,* resonance.

We point out that if the mass formula (1) is to
be taken seriously, then alternative (i) obtains.
The values of the constants a, b, and c¢ for the
meson octet, baryon octet, and the presumed dec-
uplet of meson-baryon resonances are given in
Table I. Empirically for the meson octet, the
squares of the masses and not the masses them-
selves more nearly satisfy the mass formula.
Therefore the values of a, b, and c in Table I for
the meson octet have been determined using For-
mula (1) with M, a, b, and c replaced, respec-
tively, by their squares. (Here we are simply
following a convention sometimes adopted.) In
the case of the meson-baryon decuplet only the
combination b-7¢ appears, so we have put ¢c=0
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Table I. Mass formula parameters (in MeV).
Meson Baryon Meson-baryon
octet octet decuplet

a 412 1154 1385

b 0 - 195 - 146

c 276 - 20 0

for simplicity in Table I. As the strength of the
symmetry-breaking interaction is switched off,
each of the masses in a given multiplet must ap-
proach its mean value a, according to the mass
formula. Thus the resonance pole is at Ep =1385
MeV, which is 181 MeV below the meson-baryon
threshold E; = (412 +1154) MeV =1566 MeV, in
contradiction with alternatives (ii) and (iii).®
Next let us turn to question (III). We stress the
importance of formulating such a criterion since
it is essential to a deeper understanding of the
meaning of multiplets under the influence of large
symmetry-breaking interactions. We also stress
that question (III) is quite different from, though
related to, question (II). If one starts from a
symmetry-respecting Hamiltonian, gradually
switches on the symmetry-breaking interaction,
and follows the motion of the various members
of a given multiplet as poles in the complex en-
ergy plane, one is only tracing the “genetic” de-
velopment of a multiplet. When the strength of

the symmetry-breaking interaction is large enough,

an individual member of a multiplet could have

so much symmetry mixing in its wave function

that it becomes meaningless to apply symmetry
considerations to it regarding it as belonging to
a pure representation.

To discuss this point we construct the following
model in which the higher symmetry of the inter-
actions is broken in a specific manner. Consider
a many-channel two-body interaction for which
the thresholds are different in the various chan-
nels. Assume that there exists a distance », such
that (i) for distances » <7, the interaction is
strong and the system respects a certain sym-
metry, the symmetry-breaking interaction being
then negligible; (ii) for distances » >, the in-
teraction is unimportant and the system exists
as two spatially separated particles having vari-
ous masses. The kinematic effects due to the
mass differences and threshold differences
then cause the wave numbers k&, to be differ-
ent channels « in the region »>7,. In this mod-
el the symmetry-respecting and symmetry-
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breaking parts of the system are spatially sep-
arated. In the R-matrix formulation of the scat-
tering process of Wigner and Eisenbud,® this
spatial separation means that the matrix R
which describes the system for » <7, commutes
with the symmetry group. But the S matrix,
which is an explicit function® of R and the chan-
nel wave number matrix K, does not commute
with the symmetry group because K does not.

In this model we can formulate the criterion
that the mass splitting can be considered as a
perturbation in determining the position of a
pole of the S matrix. The criterion is that the
wave numbers &  in different channels, eval-
uated at the pole, must satisfy

<
lakl<k I, )

where Ak represents the difference between the
wave numbers of different channels.

For poles on the sheet reached by passing
through the cut between thresholds, the different
channel wave numbers k, are complex numbers
located in different quadrants and requirement
(2) is never satisfied. Therefore, in this model
the positions of the resonance poles cannot be
determined by considering the symmetry-breaking
interaction as a perturbation. We observe in this
connection that in the case of isotopic spin sym-
metry the resonances, e.g., the singly charged
component of the N,,* whose decays into p +7°
and n +7% involve thresholds differing by 5.9 MeV,
do satisfy criterion (2).

It seems to us that inasmuch as the internal
structure of the resonances depend crucially on
the channel wave number, criterion (2) should
have general validity and is not restricted to the
specific model discussed above. In Table II we
list the wave numbers k&, for the various channels
for the resonances N,,*, YV ,*, =,,* and the hypo-
thetical Q-. It is obvious that (2) is not satisfied.

Aside from the question of treating the symme-
try-breaking interaction as a perturbation, one
can ask whether a resonance could be considered
as belonging to a pure representation even if (2)
is not satisfied. Now in all cases at a pole of the
S matrix, the residue at the pole defines a “de-
caying solution.” In our model in the region »
<7, the Hamiltonian exhibits exact symmetry.
Therefore, in this interior region one can expand
the “decaying solution” into solutions belonging
to different representations of the symmetry
group. The relative magnitudes of the various
amplitudes determine the degree of mixing of the
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Table II. Channel wave numbers at the resonance
poles.

Resonance pole Channel wave

location number at pole
Channel (MeV) (MeV/c)
N 1238 =501 234 - 454
KZ 1238 -501 - 13+477¢
A 1385-251 209- 25i
5> 1385-251 125 - 323
KN 1385-251 - 42+182%
nz 1385-251 - 12+467:
= 1385-25% - T+473i
TE 1530 - (<4)i 144 - (<5)i
KA 1530 - (<4)i -(<5)+231%
Kz 1530 - (<4)i -(<4)+3181
nE 1530 - (<4)i -(<2)+4633
KE 1676 3054

internal or intrinsic properties of the resonance.
A minimum criterion, weaker than (2), that the
resonance approximately belong to a pure multi-
plet, is that the interior part of the “decaying
solution” in our model belongs to the pure multi-
plet with little mixing. We have attempted to see
whether this weaker criterion for the pure multi-
plet assignment in the case of the Ny,,* possibly
could be valid in this model. Assuming that |kr,|
> 1, the centrifugal barrier is negligible, and
one finds that the equation defining the decaying
solution y is

(R +iK ")y =0, (3)

where K is the wave-number matrix at the pole
for the two channels, and R is the derivative ma-
trix. Choosing the states ¢,,=(1/2)[N - KZ]; _3
and @, =(1/¥2)[7N +KZ]; -3 as the basis, these 2
matrices assume the following form

111+2167 124-261;
K= (MeV/c), (4)
124-261; 111+216;
RIO O
R= . (5)
0 Ry

The diagonal form of R is required by SU, sym-
metry in the interior region.
Writing
Y10
= ,
Yo

one finds that the internal wave function for the
decaying state has the values Ry, and R, ¥,, at
v =7y, and the internal radial derivative has the
values y,, and y,, at » =»,. The requirement that
the internal wave function approximately belongs
to only the tenfold multiplet is thus equivalent to

IR 2727 12 << IRy gif10 1 (6)

and
g 12 < 10 1% (7)

It is easy to verify that (3), (6), and (7) cannot be
simultaneously satisfied. This is a consequence
of the off-diagonal elements of K~ being non-
negligible in this representation. [Of course, if
criterion (2) were satisfied, these off-diagonal
elements would be small.] Thus the N,,* reso-
nance cannot be regarded as approximately be-
longing to only the tenfold multiplet in this model.

We have emphasized above some problems en-
countered in assigning the meson-baryon reso-
nances to a pure multiplet in the octet symmetry
scheme. In particular, we pointed out that the
application of the mass formula to Ny, *, Y, *, &, ,*
and @7, regarded as forming a pure tenfold multi-
plet, is without theoretical justification. How-
ever, equally spaced energy levels are always
empirically worthy of attention, and the search
for the 2~ should certainly be continued. We only
emphasize that if the Q~ is found and if it does
satisfy the equal-spacing rule, it can hardly be
interpreted as giving support to the octet symme-
try model, at least not without the introduction
of drastically new physical principles.
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NEW KINETIC EQUATION*
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The purpose of this Letter is to derive from
first principles a new kinetic equation which ap-
plies to all the regimes for which Bogoliubov*
has derived specialized equations. The new equa-
tion therefore constitutes a unified description
of all kinetic regimes.

A kinetic equation is an equation for the single-
particle distribution function, F, which has the
form

3aF /8t =A[F], (1)

where A depends (functionally) on F only, and
which should determine F in terms of its initial
value alone.

Denote by ¢ and r the depth and the range of the
repulsive two-body potential U, by n =N/V the
mean density of a gas of N particles enclosed in
a volume V, and by 2T the mean kinetic energy
of a particle of the gas. Bogoliubov’s theory
yields the following three equations in the re-
gimes indicated:

Boltzmann (short-range regime) if ¢/kT ~1,
nri~e<1;

Landau (weak-coupling regime) if ¢/kT ~€ <1,
nri~1;

Bogoliubov (Debye regime) if ¢/kT~e <1,
nri~1/e. (2)

In each of these regimes the new equation coin-
cides to lowest order in € with the corresponding
kinetic equation in (2).

A remarkable property of the new equation is
that it is completely convergent for the Coulomb
potential. The Landau equation, when applied to
a plasma, requires two cutoffs: at small impact
parameters in order to avoid close encounters
with large momentum transfer, and at large im-
pact parameters to simulate the effect of the De-
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bye shielding. It will be seen below that the
proper description of both the close encounters
and of the dielectric screening are included in
the new equation. The fact that convergence ap-
pears as a natural consequence of our theory is
a strong argument in favor of the resulting equa-
tion.

Our derivation does not employ a local analysis
in the (¢/kT, nr®) plane as Bogoliubov’s theory
does, but relies directly on the existence of two
well-separated time scales in the kinetic gas (e
=T°/T'« 1, where T° is the duration time of one
collision and T* is the relaxation time into equili-
brium).

Our theory is based on the following three as-
sumptions: (I) The hierarchy of equations for
the s-body distributions which follows from Liou-
ville’s theorem® is valid. As usual the limit N
~ o, V-~ withn=N/V fixed is understood.

(II) The two time scales T° and T' are well sepa-
rated. (III) The correlation functions are “well
ordered” in €, that is, denoting by G and H the
two- and three-particle correlation functions,
we assume (subscripts denote particle variables)

GxJF1F2=O(€)’ H123/F1F2F3=0(€). (3)
We write the equations for F and G in the form
8F/8t=LG, (4)

8G/8t +3¢G =IFF +T'[F]G+L'H, (5)

where 3¢ and I are the Poisson brackets for the
total and interaction energies of two particles,
T" is the “polarization” operator

G122 L13FiGay+ L3 FoGay
and L, L’ are “phase-mixing” operators
Ly Efdxzdpzlelz'Vvl;
L"=Lyg+Lys.



