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4The only other reaction similar in appearance,

conserving known quantum numbers, and energetically
possible, but not resulting in two cascade hyperons, is
p+p- = + A+K
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We have continued a study of the T =,'- "m reso-
nance at 1.530 QeV. '~' In this Letter, we report
a complete angular correlation study of the de-
cay sequence "*'-" +a+, " -A+a which al-
lows us to conclude that the simplest "~ spin-
parity assignment' is (,'-)+.

The resonance was produced by 1.80- and 1.95-
GeV/c K in the Lawrence Radiation Laboratory
72-in. hydrogen bubble chamber by means of the
reactions R +p- "*'~ +K ~+. Table I illustrates
the production and decay systematics of ™*0,
where, as in reference 1, events in the interval
1.515» M-„„»1.545 GeV are defined as "*
events. ' The relative decay rates of =*' to "
and "' confirm the T = '; assignment. ' ' From a
corrected number of 21~ 6 events, "* - " +a 0

(not shown in Table I), also produced in our film,
we obtain a total "* production cross section of
26~ 7 ~b, to be compared with 53~ 8 pb for ™*0
production. Thus the "*production reaction
proceeds through both the T =0 and T =1 channels'
and the polarization states of ™*0and "* need
not be the same. For these reasons, and also
because "*'-" is produced more copiously
than "* —=, the angular correlation analysis
is confined to the 80 examples of the former re-
action.

Figure 1 displays all 128 = +m++K' events on

a Dalitz plot of ~K„' vs M-. ~'. At 1.95 GeV/c
there is some evidence for K*(885) production,
but the =* and K* bands do not overlap. There
is no evidence for the K*(730) ' either outside the
:"*band or inside as a "*-K* interference. '
The M-. „histogram of the events in the vicinity
of the =* region is shown in Fig. 2. A study of
the error assignments and g' distributions of the
events yields an experimental resolution function
with a width of 2 MeV. The best-fit Breit-signer
distribution has I' = (7 a 2) MeV. The distribution
folded with the resolution function is shown in
Fig. 2. A value of 7g 2 MeV for I' implies that
the mean separation between "*and K' at the
time of =* decay is -30 fermis. ' This distance,
as well as the lack of evidence for K*- "*inter-
ference, seems to justify the assumption that the
:"*decays as a free particle. The possibility of
:"*interference with the constant background is
discussed below.

As discussed by several authors' ' and, more
recently, by Byers and Fenster'0 (referred to
hereafter as BF), the decay of a spin-J Y* into
a spin-'; V and a spin-zero meson leads, in addi-
tion to the usual maximum-complexity conditions,
to definite relations between the various moments
of the p polarization distribution. In principle,
these relations permit a unique determination of

Table I. Production and decay systematics for "~ .

Decay
Production process mode

Topology
scanned for

Detection
efficiency

Number
observed

Corrected
numbera

Predicted
decay rate for T

=3/2 =1/2

Production
a

(vb)

K +p —K+
~0 0

2-prong (kink)
with 1 or 2V's

0-prong with
2V's

80 93 +11

36 +15

aCorrected for detection efficiency and backgrounds.
See reference 4.
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the spin J an ed the (l'*-y') relative parity. The
usefulness of these tests depends crucial y on e

nt ofpresence of some detectable spin alignment o
the initial F*.

F llowing the treatment of BF, the spin state0 0
s in- J "*at production is described y

&~s in-multipoleset of complex parameters t& &spin-
momentsj wi'th I. ~ 2J. These are defined in
terms of the "*density matrix:

2J +I
(u, + l)t r, (l)1

+ I II.=0 M =-I

where the T M are a complete orthonormal set
Lof (2j'+ l)' complex matrices forme romrmed from the

components of the spin operator 8, and tL
=(- tp' ™T is the unit matrix and to =1.
For a parity-conserving production process,
when the normal to the production plane, n, is
chosen as the polar axis, t&

M = 0 for M odd. '
Hereafter, the symbol M shall therefore refer
only to even values. The intensity and polariza-
tion distributions, I(") and IP("), respectively,
are determined from the " density matrix p-.
=m)p-. *~E, here M is the appropriate transi-
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tion operator describing the parity-conserving decay = —=+v with orbital angular momentum l. The
moments of these distributions are summarized by BF in the following set of relations:

Intensity distribution moments (L even only):

(2)

Longitudinal polarization moments (L odd only):

(P-Y M J M-L '"L'L.
Transverse polarization moments (L odd only):

+1

, v, ) (L+L'+1) ) C(1, m, L', M-m Il, L', L, M) ( P Y, ) =y(2J+1)n t
+2 L' rn =-1

even

(4)

where

= (-)
4 C(J, ;,J, -2 I J, J, L, 0),

J J -1/2 2J+1

a (P Y ) =n fIP(:")xY (:")dQ

N
=(3/&) Z (~ A,.)Y (=-,),

i=1
(7)

where N is the number of events in the sample
and, as an example, Eq. (7) shows the calcula-
tion of the Y& moment of the polarization com-M

ponent along direction g. Because of the size of
the sample, we average over beam momentum
and production angle in the analysis. The decay
distribution for a spin-'; " is given by ';(1+o.-P

and y =El for / = J+ '-, and thus is a measure of the
(:-*:-v) relative parity; y appears only in the
transverse polarization distributions. For the
sake of brevity, the spherical tensor form of the
polarization vector is retained: IP, ' = (IPz-
+iIP&)/J2=-IP1 '*, and IP1'=IPSE. In contrast
to maximum complexity arguments, a compari-
son between the polarization moments calculated
according to Eqs. (3) and (4) permits, with suffi-
cient data, a unique spin-parity measurement. "

The normal to the production plane is defined
in terms of the incident K and outgoing =~ direc-
tions: n = (Kx "*)/IKx =*I. Each event is then
described by the direction cosines along (K, n
x K, n) -=(x,y, z) of the two vectors " and A ex-
pressed in the =* and " c.m. systems, respec-
tively. The experimental moments were evaluated
by means of relations such as

N
(Y ) =fi(:-)Y (:-)dn =(1/&) Q Y (:-.), (6)

2=1 '

~ A) so tha, t n-„P =3x A. Consideration of Eqs.
(3), (4), and (7) shows that J and y may be de-
termined without knowledge of the numerical val-
ue of 6k~.

The statistical correlations that exist between
the various experimental moments were taken
into account by means of the error matrix: U&Y
= (1/N')Q —1 (X -X;)(Y - Y,), where X and Y
are two moments and X; and Y; are the values
for the ith event. The chi squared ()t') for the
hypothesis that a, set of experimental moments

X& resulted from a population with moments
X&' is given the standard way by

~'= Q (X -X )U '(X -X ).
K, I

The results of the analysis are shown in Ta-
bles II and III. Table 0 contains the experimen-
tal evaluations of the moments in Eqs. (2)-(4) for
I + 3. Table DI contains the g', the associated
probabilities that various sets of moments are
zero, and the conclusions based on these prob-
abilities.

The moments of the intensity distribution give
strong evidence for the presence of t, . The
probability that a X' = 16.5 or larger (3 degrees of
freedom) would result from an isotropic distribu-
tion is seen to be -0.0003. We may reasonably
conclude from this alone that J~~s. However, the
much larger g' probabilities that t,~ and t,M are
zero show that the data do not require J&

The polarization moments given in Table II
have been obtained by dividing the experimental
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Table II. Multipole moments for J =1,2, 3.

Intensity moments [Eq. {2)]:
J 0 0.052 *0.032

J 2
~2 Re(t2 ) =-0.»3+0.0»

J 2
n2 Im(t, )= 0.006*0.023

J=-=1
2

Polarization moments [Eqs. (3) and (4)]:

J=-=3
2

e t'

c t'
n yt'

-0.08 +0.21

-0.21 +0.13

-0.18 ~0.48

-0.24 &0.14

-0.01 *0.17

-0.14 &0.12

-0.26 ~ 0.73

-0.25 *0.14

-0.02 *0.30

-0.18 +0.15

-0.36 + 0.98

-0.25 + 0.14

-0.03 + 0.42

-0.18 +0.15

Re(t )

n y Re(t )

e Im(t )3
n y Im(t )

-0.18 +0.08

-0.26 &0.09

-0.04 &0.11

+0.09 ~0.09

-0.32 ~0.15

-0.31 +0.12

-0.08 ~0.21

+0.10 &0.10

-0.45 &0.21

-0.32 ~0.12

-0.12 + 0.29

+0.11 &0.11

moments of Eqs. (3) and (4) by n and (2J
+1)n&, respectively, for the hypotheses 8=';,

, 2&, and ';. Using these values together with
the complete error matrix, one can evaluate, for
each assumed J, the set of linearly combined ex-
perimental moments: (o.-„t& ) + (o-yt&~), for

t 3 and t,'. The g' probabi lity that a given
set (+) is zero gives a measure of the compati-
bility of the data with the assumed J and y =+1.
As indicated in Table HI, the data are compatible
with P», while the chance that they resulted
from the decay of a D,~ particle is ~3. For 4=-,',

t, =-0. 18+ 0. 11,
Re(t, ') = 0. 19+ 0. 06,
Im(t, ') = -0. 02 a 0. 08,

=0 47+ 0 28
t, =0.20+ 0.20,

Re (t,') = 0. 42 a 0. 13,
Im(t, ') = -0. 08 + 0. 13.

D» is compatible, while +~, is unlikely by 4'4.
The situation is similar for J =-, . The paucity
of data in this experiment makes it impossible
to decide between the J ~ possibilities.

The simplest "*spin-parity assignment com-
patible with the data is P~, . Assuming P~, and
e-. =-0.50,"the best values for the t M are

L

Table III. p summary of "*spin-parity analysis.

Hypothesis

t M

t MI
t23 =0

t M

tM 0

t4g =0

J =--=- 3
2

(1-y)t) 3
—-0M

(1+y)t, 3~=0
7

J=-5
2

(1-q)t, 3 =0M
' I{1+y)tg 3 = 0

16.5
12.0
29.2

7.6
7.6

18.2

1.5
10.3

0.9
9.5

Degrees
of freedom

10
15

Probability

0.0003
i

O. oss
o.oooz

i

o.tt
0.58
o.zo

0.65
0.016

0.84
0.023

Conclusion

J) 3

Data do not require J & 3
2

Data compatible with I'»
D» unlikely

Data compatible with D@2
I"

&2 unlikely
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These values as well as the corresponding values
for D» are consistent with the allowed ranges of
the t&M as discussed in BF. Therefore, addi-
tional potentially useful tests based on the theo-
retical limits of the t yield no further state-

L
ments with the data.

As can be seen in Fig. 2, the background in-
tensity is -5% of the "* intensity at its peak.
Therefore, one cannot disregard the possibility
that the observed anisotropies may be due to in-
terference between the resonance and nonresonant
background. However, interference effects de-
pend on the phase difference between the two pro-
duction amplitudes and therefore are expected to
vary strongly with the "m mass. For this rea-
son, the "*events with M-„„&1.530 and &1.530
GeV were examined separately. Within statistics,
the results for these two sets of data are consist-
ent with one another. Thus, there are no de-
tectable interference effects of this type. Fur-
thermore, no "impossible" moments were found

in the analysis; that is, neither odd M moments
nor odd (even) l. moments were found in the in-
tensity (polarization) distributions.

As a check on the analysis and on the IBM-7090
computer program MOMENT which was used to
perform the statistical analysis, 100 experiments,
each with 80 events, were generated by Monte-
Carlo techniques, assuming isotropic distribu-
tions of " and A. Each of these experiments was
analyzed by MOMENT. Histograms of the re-
sultant y' distributions for various hypotheses
were then compared with the theoretical g' dis-
tribution and found to agree within statistics. In
addition, 100 experiments were Monte-Carlo
generated, assuming, in turn, a P~, and a D~,
:"*spin state described by the values of t&~ ob-
tained in the real experiment. Histograms of the
t ~ obtained from the MOMENT analysis of these
"fake*' experiments were found to agree in both
position and width with the real experiment. The
results of these Monte-Carlo experiments also
justified the X' probabilities given in Table III.

The simplest spin-parity assignment, ' (a2)+,

agrees with the prediction of SU(3) symmetry. "~"
The existence of a second =m resonance" at 1600
MeV receives no support from this experiment.
Based on Fig. 2, the upper limit on the produc-
tion cross section of a "«(1600) at a mean inci-
dent momentum of 1.87 GeV/c is -1 pb.
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