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for A beta decay given by 0.016(gA/gp) (1+ 3A, )/[1
+ 3(1.14)~]. With q =+0.75, the value appropriate to A.

is -0.45, and this branching ratio becomes 0.016/27
= 0.6 &10, quite compatible with the value (0.82 ~0.13)
&10 reported recently by R. Ely, G. Gidal, G, Kal-
mus, L. Oswald, W. Powell, W. Singleton, F. Bullock,
C. Henderson, D. Miller, and F. Stannard, Phys. Rev.
131, 868 {1963).

In general, the factor D will include form factors

corresponding to the two vertices shown in Figs. 1(c)
and 1(d). Since q =400 MeV/c, there could be quite ap-
preciable uncertainty in the magnitude of the matrix el-
ement given for the Karplus-Ruderman terms by ex-
pression {15).

With the Karplus-Ruderman terms alone, (AP) de-
excitation would be the dominant process. With x
= (Pq/sq A)~ = 2.2, the ratio C(AHe~) would be (6+ 14x)/
(3+ ) = 7.1.
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In the unitary symmetry scheme of Gell-Mann'
and Ne'eman, ' particles in a given unitary multi-
plet are usually classified by means of isotopic
spin and hypercharge. It has, however, been
observed by Levinson, Lipkin, and Meshkov ~

that other classifications can be obtained by con-
sidering U, subgroups of U, that are different
from the isotopic-spin subgroup. Here we take
advantage of these alternative classifications to
derive general formulas for magnetic moments
and electromagnetic mass differences of elemen-
tary particles, and to make some speculations
about the weak interactions. As far as the meta-
stable baryons are concerned, our formulas yield
no relations other than those obtained by other
authors' '; they are, however, valid for all rep-
resentations of SU~, and, as an illustration, they
are applied to the baryon-meson resonances of
the "tenfold way. "9

Following Okubo'9' we consider the generators
A & (p, v = 1, 2, 3) of infinitesimal unitary trans-
formations in U, . Their commutation rules

[A,A j=d A -0 A
P

'
v P v v P

and the unitary restriction

(A ) t =A
p

enable us to divide the generators into three sets,
each containing an angular momentum type oper-
ator and a corresponding hypercharge operator.
They are

T+ = -A~,

with

T~ = I'~siI'2;

and

L~ =L) +iL2;

K+=-As, K =-As s Ks 2(As As )t yK A1

with

K~ =R) a iK2.

From each of these sets we can construct a set
of mutually commuting operators

and

T9

L'

(6)

(7)

(8)

Because of the commutation rules in (1), T', Ls,
and K' do not commute with one another; hence,
only one of the three sets of operators (6), (7),
(8) can be diagonalized in an arbitrary matrix
representation of the A„".

We identify T', T, with the usual isotopic-spin
operators, and g& with the usual hypercharge

y = (B+s),

where B denotes baryon number and S strange-
ness. If we restrict ourselves to representa-
tions U(f»f„fs)of U„such that'

fx+fs+fs = 0

ens

a '+a 2+a '=O.1 2 S

L+=-Ax i L =As -i Ls= s(As -Aj ), E' =A, ',
L

with
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From Eqs. (3) and (11), we can identify the elec-
tric charge operator Q as

theory,

bm (n) = ( n I
I'„"

I o.), (IS)
q=TS+-,'Y =-A,'

T
(i2)

K~= ~(2Y - q), Y =-q.

in addition, from (4), (5), (11), and (12), we find

I.,=-,'(q+Y ), Y =(q-Y ), (i3)

where T»" is a component of a tensor T
&

"~.
The effects of strong interactions that violate uni-
tary symmetry have been neglected in both of
these formulas.

To evaluate the matrix element in (17), we make
use of the most general form' of Tv&,

It follows from (13) and (14) that the axes 2 and 3
in the weight diagrams of references 3 and 4 cor-
respond to the Y~ and YL axes, respectively.

If we regard the baryons as members of the
eightfold representation U(1, 0, -1) of U~, then
their classifications, based on (7) and (13), and
on (8) and (14) are as shown in Tables I and II.
The corresponding classifications for pseudo-
scalar and vector mesons can be obtained by
means of the substitutions

and the identity

A A =iA:A -&q+(-'q'- K')
1

(20)

where

A:A —=A A =f~ +f2 +fs +2(f~-f~) (21)

T =ab +bA +c[A A - —3b A:A] (19)
V V V v v

(Z, A, X, =)-(m, q, K, K)

(Z, A, 1V, :")-(p, ~, K~, K"). (16)

for a representation U(f„f„f~)of U, . The quan-
tities a, b, c in (19) play a role analogous to that
of the reduced matrix element in the quantum the-
ory of angular momentum'; if Tv~ is traceless,
then

Turning to the electromagnetic interactions, we
assume that the electromagnetic current behaves
like the T,' component of a tensor Tv~ under the
transformations of U, .' The magnetic moment of
a particle n is then given by

a=0. (22)

In the derivation of (20) and (22) we have made
use of Eqs. (11) and (12).

From (17), (19), and (20), we obtain the formula

p. (n) =(nIT, 'In); (i7) I (n) = (n la'+b'q+ c(4q'- K')
I n), (23)

and the electromagnetically induced contribution
to its rest mass is, in lowest order perturbation

Table I. Classification of baryons by means of I,LS,
YQ ~

where

(24)a'=a+,'-(A:A)c, b'=--,'(2b+3c).

If n is an eigenstate of K' (as is the case for all
baryons, except Z' and Ao; see Table II), then

Eigenstates p(n) =a'+b'q+c[-,'q'-K(K+1)]. (25)

1
0
0

-1

g+ 0

p, 2(Z +W3A0), -"
—,'(&3z0- A')

n, Z

K Eigenstates

1
0
0

-1

-'(-z'+ WSA0) ='
1(g3 g0+ AO)

p, -Z

Table II. Classification of baryons by means of K, K3,
YK

b, b~', b~'A, ', b, '(Ag A,"), A, 'A, ', A, (Ag'A, "),
(A~'A P) (A~'A, ").

It then follows from (12) and (20) that

bm(n) = (n I {d+eq+fq'+g(-,'q'- K') +hq(-,'q'- K')

+q(-,'q'- K')') I n);
and if n is an eigenstate of K',

Gm (n) =d eq++fq' g[&+q'- K(K + 1)]

(26)

+aq[-,'q'- K(K+ I)]+~[-,'q'- K(K+ I)]'. (27')

To evaluate the matrix element in (18), we note
that the most general form of T» is a linear
combination of the six terms
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It is worth noting that the magnetic moment for-
mula (25) and Formula (27) for bm(u) are the
analogs of Okubo's first-order' and second-order'
mass formulas, respectively, with Y replaced
by Q, and T replaced by K.

Table II and Eqs. (23) and (25) yield the rela-
tions

u(& ) =v(:" ), v(P) =g(&'), v(n) =v(:"'),

2V(&') =u(&')+u(~ ),

6~(A') =~(p)+g(& )+4V (n),

=3m(A')+w(~') -2m&) -2V(:"'), (28)

topic spin T and hypercharge YT are related by

Z 1 +1Y2 T'

Similarly, for the K spin and Y&, we find

K =1+~Y =1- ~Q.K
(31)

This relation, together with Eq. (21}, leads to a
considerable simplification of the magnetic-mo-
ment formula (25) for members of the tenfold
representation (all of which are eigenstates of K'),
namely,

p(&) =&-bQ,

where a, b are the same as in Eq. (19}. Similarly,
the formula in (27) reduces to

bm(a) =d'+e'Q+f'Q'. (33)
immediately; in addition, the traceless condition
(22) implies

u(A') = le&),

Equation (33) is reminiscent of the "equal-spac-
ing" mass rule~ and leads to the following rela-
tions:

v (& ) = -[u (P) + u &)]

Table II and Eqs. (26) and (27) yield

(29) u (& ) = u(:-" ) = ~ (&,' ) = V(N* ),

~ ( g0) ~ (y 00) —~ (Neo)

l5m(:" ) - bm(:-0) = 5m(Z )- bm(Z+)+5m(P) - 5m@),

2~35m(ZO-A ) =35m(A ) +5m(Z ) -25m(n)

W(I', *+)= V(N*+),

g(N*-) + p (N*+) 2~(N~o)

(34)

- 25m(:-'). (30) p(N*++)+2g(N* ) =3p(N*') (35)

If the traceless conditions (22) hold, then we have,
in addition,

p, (:-*')=0, etc. ;

(36)uQ ) = g(&, '+) =--2g(N*++).

From (33) we obtain

bm(N* ) - bm(N*') =6m(-* ) -bm("*')

= bm(l, *-)- bm(y, *') (37)

bm(N*+) - bm (N*') = bm(y, ")- bm(y, ")
= —'[bm(N*++) - bm(N* )].(38)

The relations in (28), (29), and (30) have al-
ready been obtained by other authors, ' who use
methods different from ours. The particular ad-
vantage of our method is that it yields general
formulas that can be applied to the particles of
any unitary multiplet. As an example, let us
consider the "tenfold way" of Glashow and Saku-
rai.

We assume that the & baryon-meson resonances
are members of the tenfold representatione U(2, -1,
-1) of U~. The classification of particles by means
of (K', K„I'K=-Q)is given in Table III (see refer- and
ence 4 where the symbol U is used instead of K).
As is well known for this representation, the iso-

E igenstates

0
-1
-2

z
gp Y yp ~yp

f
++ +++
~4++

Table III. Classification of baryon resonances by
means of K,E&, Y~.

It is evident from the preceding discussion that
the classification of particles based on the oper-
ators (K', K~, YK} is of special significance for
electromagnetic interactions. The reason is not
hard to find, for, as Lipkin' has pointed out, the
electromagnetic current conserves K spin. Hence
K spin plays the same role for electromagnetic
interactions as does isotopic spin for the strong
interactions. In view of this close association

102



VOLUME 11,NUMBER 2 PHYSICAL REVIE%' LETTERS 15 JULY 196$

AS =~q=~l,

bS =-EQ=al,

(39a)

(39b)

AS = 0, A@=~1

are equivalent to [see Eq. (13)j

(39c)

and

MLS=+1,

Ls 0

zy =0,

=+2,

(4Oa)

(40b)

AL3 =+@, hY

respectively. For nonleptonic decays,

aS=~1, ~@=0

is equivalent to

~y =+1.

(4Oc)

(41)

From (39b) and (40b), we see that the only proc-
esses that may conserve L spin are those with
b,S = -b, Q. If we assume

aL =0 (43)

in this case, then it follows from Table I that

(Z+Ine+v) =-(:" IZ e+v) .

between two of the three classification schemes
and two of the three general classes of interac-
tion, we would like to suggest that the third clas-
sification, namely that based on (L', L„YL)[see
Eqs. (4) and (13)], may be closely associated with
the weak interactions.

To explore the consequences of this suggestion,
we note that for leptonic decays, the selection
rules

If we assume that

(45)

for AS =a, Q leptonic decays [see (39a) and (40a)],
then we find

(:- I Ae v) =-(A IPe v) . (46)
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Similar relationships can be obtained for the other
types of weak interactions, and we hope to examine
these elsewhere. One final point worth noting is
that if Q,L~ I

)
&~, the corresponding values of AQ,

b,S are not consistent with the presently observed
weak interactions.
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kin for a very stimulating correspondence.
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