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We derive a set of minimal and well-behaved nonlinear field equations describing the collective

properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic

alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original

microscopic model. In particular, we derive an explicit expression for density-segregated, banded

solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.
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Collective motion is a central theme in the rapidly
growing field of active matter studies which loosely groups
together all situations where energy is spent locally to
produce coherent motion [1]. In spite of the emergence
of better-controlled, larger-scale experiments [2–6], our
understanding of collective motion mostly comes from
the study of mathematical models, and particularly of
models of ‘‘dry’’ active matter systems, where the fluid
which surrounds the moving objects can be neglected.

Microscopic models, then, usually consist of interacting
self-propelled particles, as in the Vicsek model [7], where
constant-speed point particles locally align their velocities.
Their study, togetherwith somemore theoretical approaches,
revealed a wealth of phenomena such as true long-range
orientational order in two dimensions, spontaneous segrega-
tion of dense and ordered regions, anomalously strong num-
ber fluctuations, etc. [8–10].

These results have given rise to an emerging picture of
universality classes, typically depending on the symme-
tries involved, which one would ideally characterize by
some coarse-grained field equations. Different routes can
be followed to obtain such equations: one can write a priori
all terms allowed by symmetries up to some arbitrary order
in gradients once hydrodynamic fields have been identi-
fied. One can also derive them from some microscopic
starting point under more or less controlled and constrain-
ing assumptions, yielding more or less complete, well-
behaved equations. There is, nevertheless, shared belief,
based mostly on renormalization-group approaches, that in
each case there exists a set of minimal equations account-
ing for all large-scale physics.

For polar particles aligning ferromagnetically (as in the
Vicsek model), there is now near consensus about this
minimal set of equations: the phenomenological theory
initially proposed by Toner and Tu [11] is essentially

correct if one takes into account the dependencies
of its coefficients on density and parameters initially
overlooked but later derived from microscopic dynamics
in Refs. [12,13]. It has been shown to reproduce many of
the phenomena observed in microscopic models [14],
although a complete study of its nonlinear solutions and
dynamics is still lacking.
For the other important universality class of polar parti-

cles aligning nematically—e.g., self-propelled rods—the
situation is less satisfactory: Baskaran and Marchetti [15]
first derived rather lengthy yet mostly linear hydrodynamic
equations for hard rods interacting via excluded volume,
showing in particular the presence of global nematic, not
polar, order, in agreement with microscopic observations
[16]. Very recently [17], they added some nonlinear terms
and performed a linear stability analysis of the homoge-
neous ordered state within an arbitrary choice of parame-
ters. These even longer equations do not benefit from the
same consensus as the Toner-Tu theory.
In this Letter, we derive a set of minimal nonlinear field

equations describing the collective properties of self-
propelled rods from a simple microscopic starting
point, the Vicsek model with nematic alignment studied
in Ref. [16]. We use a ‘‘Boltzmann-Ginzburg-Landau’’
approach, a controlled expansion scheme [18], which is a
refined version of that used in Ref. [12]. Analysis of the
solutions of these equations shows good agreement with
the original microscopic model. In particular, we derive
explicit expressions for density-segregated, banded solu-
tions, allowing us to develop a more complete analytic
picture of the problem at the nonlinear level.
In the Vicsek model with nematic alignment [16],

point particles move off lattice at constant speed v0.
Orientations and positions are updated following (here in
two dimensions):
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�tþ1
j ¼ arg

�X
k�j

sign½cosð�tk � �tjÞ�ei�tk
�
þ �t

j; (1)

r tþ1
j ¼ rtj þ v0eð�tþ1

j Þ; (2)

where eð�Þ is the unit vector along �, the sum is taken over
particles k within distance d0 of particle j (including j
itself), and � is a white noise with zero average and
variance�2. Like all Vicsek-style models, it shows orienta-
tional order at large-enough global density �0 and/or
small-enough noise strength �. It was shown in Ref. [16]
that the order is nematic and that both the ordered and
disordered phases are subdivided in two: The homogene-
ous nematic phase observed at low noise is replaced at
larger � values by a segregated phase where a dense,
ordered band occupying a fraction of space coexists with
a disordered, dilute, gas. The transition to disorder is given
by the onset of a long-wavelength instability of this band
leading to a chaotic regime where bands constantly form,
elongate, meander, and disappear over very long time
scales. At still larger � values, a ‘‘microscopically disor-
dered’’ phase is observed.

Following Ref. [12], we write, in a dilute limit where
only binary interactions are considered and assuming that
orientations are decorrelated between them (‘‘molecular
chaos hypothesis’’), a Boltzmann equation governing the
evolution of the one-particle distribution fðr; �; tÞ:
@tfðr; �; tÞ þ v0eð�Þ � rfðr; �; tÞ ¼ Idif½f� þ Icol½f�; (3)

with the angular diffusion and collision integrals

Idif½f� ¼ ��fð�Þ þ �
Z �

��
d�0fð�0Þ

�
Z 1

�1
d�P�ð�Þ�2�ð�0 � �þ �Þ;

Icol½f� ¼ �fð�Þ
Z �

��
d�0Kð�0; �Þfð�0Þ

þ
Z �

��
d�1fð�1Þ

Z �

��
d�2Kð�1; �2Þfð�2Þ

�
Z 1

�1
d�P�ð�Þ�2�ð�ð�1; �2Þ � �þ �Þ; (4)

where P�ð�Þ is the microscopic noise distribution, �2�

is a generalized Dirac delta imposing that the argument
is equal to zero modulo 2�, Kð�1; �2Þ ¼ 2d0v0jeð�1Þ �
eð�2Þj is the collision kernel for dilute gases [12],
and �ð�1; �2Þ ¼ 1

2 ð�1 þ �2Þ þ �
2 ½H½cosð�1 � �2Þ� � 1�

for � �
2 < �2 � �1 <

3�
2 [with HðxÞ the Heaviside step

function] codes for the nematic alignment. Rescaling of
time, space, and density allows us to set the ‘‘collision
surface’’ S � 2d0v0=� ¼ 1 and v0 ¼ 1 below, without
loss of generality.

Next, the distribution function is expanded in the Fourier
series of the angle: fðr; �; tÞ ¼ 1

2�

P1
k¼�1 fkðr; tÞe�ik�,

with fk ¼ f��k and jfkj � f0. The zero mode is nothing

but the local density, while f1 and f2 give access to the
polar and nematic order parameter fields P and Q:

� ¼ f0; �P ¼ Ref1

Imf1

 !
;

�Q ¼ 1

2

Ref2 Imf2

Imf2 �Ref2

 !
: (5)

As amatter of fact, it is convenient to use f1 and f2, together
with the ‘‘complex’’ operators r � @x þ i@y and r� �
@x � i@y. The continuity equation governing � is given by

integrating the Boltzmann equation over angles:

@t�þ Reðr�f1Þ ¼ 0: (6)

In Fourier space, the Boltzmann equation (3) yields an
infinite hierarchy of equations:

@tfk þ 1

2
ðrfk�1 þr�fkþ1Þ

¼ ðP̂k � 1Þfk þ 2

�

X1
q¼�1

�
P̂kJkq � 4

1� 4q2

�
fqfk�q;

(7)

where P̂k ¼
R1
�1 d�P�ð�Þeik� and

Jkq ¼
Z �=2

��=2
d�

��������sin
�

2

��������eiððk=2Þ�qÞ� þ cos
k�

2

�
Z 3�=2

�=2
d�

��������sin
�

2

��������eiððk=2Þ�qÞ�: (8)

To truncate and close this hierarchy, we adopt the fol-
lowing scaling structure, valid near onset of nematic order,
assuming, in a Ginzburg-Landau-like approach [18], small
and slow variations of the density and of the polar and
nematic fields:

�� �0 � 	; ff2k�1; f2kgk	1 � 	k; r� 	; @t � 	:

(9)

Note that the scaling of space and time is in line with the
propagative structure of our system, as seen in the con-
tinuity equation (6), which contains no diffusion term.
The first nontrivial order yielding well-behaved equa-

tions is 	3: keeping only terms up to this order, equations
for fk>4 identically vanish, while those for f3 and f4
provide expressions of these quantities in terms of �, f1,
and f2, which allows us to write the closed equations:

@tf1 ¼ � 1

2
ðr�þr�f2Þ þ 


2
f�2rf2

� ð�� �jf2j2Þf1 þ f�1f2; (10)

@tf2 ¼ � 1

2
rf1 þ �

4
r2f2 � �

2
f�1rf2 �

�

2
r�ðf1f2Þ

þ ð�� �jf2j2Þf2 þ!f21 þ �jf1j2f2; (11)

where all coefficients depend only on the noise strength �

(via the P̂k coefficients) and the local density �:
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2

�

�
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5
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�
1

15
þ P̂4

��
13

9
� 6

ffiffiffi
2
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�
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�

�
�
8
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�
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5

�
�þ 1� P̂4

��1
: (12)

Below, for convenience, we choose the Gaussian noise

distribution P�ð�Þ ¼ 1
�
ffiffiffiffiffi
2�

p exp½� �2

2�2� for which P̂k ¼
exp½� 1

2 k
2�2� [19]. A few remarks are, then, in order.

First, � can change sign and become positive for large
enough �, while � is always positive. The homogeneous
disordered state (f1 ¼ f2 ¼ 0) undergoes an instability to
nematic order when � ¼ 0, defining the basic transition
line �tð�0Þ in the ð�0; �Þ plane [Fig. 1(a)]. Next, � being
positive in the �> 0 region where the disordered solution
is unstable, Eqs. (10) and (11) possess a homogeneous

nematically ordered solution ðf1; f2Þ ¼ ð0; ffiffiffiffiffiffiffiffiffiffi
�=�

p Þ (assum-
ing order along x, so that f2 is real positive) [20]. The
nonlinear terms express the complicated relation between
the polar and nematic fields, which are both slow modes. In
particular, nonlinearities in Eq. (10) do depend on f2 and
prevent the trivial exponential decay of f1, as predicted by

linear theories [17], which would result in active nematic
field equations [9]. On the other hand, the familiar non-
linearities of the Toner-Tu theory for polar systems may
only be recovered if f2 would get enslaved to f1 [12],
which is not possible in a system with nematic interactions
where �> 0.
In the following, we further expand coefficients up to 	3

in �� �0, which amounts to keeping the crucial � depen-
dence in � and � and replacing � by �0 in all other
coefficients. This does not change any of our main results,
but allows us to find exact band solutions (see below).
We have studied the linear stability of the homogeneous

nematic solution with respect to perturbations of an arbitrary
wave vector in the full (�0, �) parameter plane (Fig. 1).
Similar to the polar case with ferromagnetic alignment
[12–14,21], this solution is unstable to long wavelengths in
a regionbordering the basic transition line. Themost unstable
modes in this region are roughly—but not exactly—
transversal to the order of the solution [22]. The homoge-
neous nematic solution becomes linearly stable deeper in the
ordered phase [line�s in Fig. 1(a)], but its stability domain is
limited by another instability region where q¼0 is the most
unstable mode (line �u, which can be shown to be given by

�þ
ffiffiffiffiffiffiffiffiffiffi
�=�

p ���=�¼0). This strong instability, which
occurs at large densities and/orweak noise,maybe anartifact
introduced by our truncation [24].
To go beyond the linear stability analysis of spatially

homogeneous solutions, we performed numerical integra-
tions of Eqs. (6), (10), and (11) in rectangular domains with
periodic boundary conditions of typical linear sizes 50–200
[25]. For parameter values in the instability region of the
nematic homogeneous solution, we observe stationary
asymptotic solutions in which nematic order is confined
to and oriented along a dense band with local density �band

amidst a homogeneous disordered ‘‘gas’’ with �gas such

that �band >�s > �t > �gas [Fig. 2(a)], where �sð�Þ is

given by inverting �sð�0Þ. Varying system size and using
various domain aspect ratios, we find most often a single
band oriented along the shortest dimension of the domain,
which occupies a size-independent fraction� of space. All
these observations are in agreement with the behavior of
the original microscopic model [16].
Band solutions are also present beyond the region of

instability of the homogeneous ordered state. Starting
from, e.g., sufficiently inhomogeneous initial conditions,
we find band solutions both for �0 values larger than �s,
where they coexist with the homogeneous ordered phase,
and below �t, where the disordered homogeneous solution
is linearly stable. Working at fixed �0 varying � for clarity,
we thus find bands in a [�min, �max] interval larger than the
linear-instability interval [�s, �t] (Fig. 3). Along it, the
fraction occupied by the ordered band decreases from
� & 1 near �min to� * 0 near �max. Furthermore, within
a small layer �max <� � �c, the bands are unstable,
giving rise to a chaotic regime where they twist, elongate,
break, and form again, in a manner strikingly similar to

FIG. 1 (color online). (a) Linear stability of homogeneous
solutions in the (�0, �) plane (plotted as a function of �2 to

enhance clarity). The line � ¼ 15�ðP̂2�1Þ
40P̂2ð2

ffiffi
2

p �1Þ�64
, given by� ¼ 0, is

the basic instability line defining �tð�Þ or �tð�0Þ: above it, the
disordered homogeneous solution is linearly stable; below, it

becomes unstable and the ordered solution f2 ¼
ffiffiffiffiffiffiffiffiffiffi
�=�

p
exists.

This solution is unstable between the �t and the �s lines. It is
linearly stable between �s, and �u, which marks the border of a
region where q ¼ 0 is the most unstable mode. The color scale
codes for the angle between the most unstable wave vector and
the direction of nematic order. (b) Largest eigenvalue sþ (when
positive) as a function of �2 for �0 ¼ 1.
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observations made in the original microscopic model
(Figs. 2(b)–2(d), [26]).

Thus the region of linear instability of the homogeneous
ordered solution does not correspond to the existence (and
stability) domain of band solutions, which is wider. In the
original microscopic model, with its built-in fluctuations,
coexistence of band solutions and homogeneous order has
not been reported, but the homogeneous solution was
found metastable near the threshold of emergence of bands
where these appear ‘‘suddenly’’ [16]. At the other end of
the band existence region, no coexistence was reported
between band solutions and the homogeneous disordered
state, suggesting that the latter is always driven to the
former by intrinsic fluctuations. All this suggests that
transitions found in the microscopic model do not corre-
spond to the linear stability limits of homogeneous solu-
tions of our deterministic continuous equations, pointing to
a subcritical bifurcation scenario.

We now derive band solutions analytically. Suppose
that, as observed, f1 ¼ 0 for band solutions and that f2
is real and positive (i.e., nematic order is along x), and
depends only on y. For a stationary solution, Eq. (10) then
yields, after integration over y,

�� f2 � 1

2

f22 ¼ ~�; (13)

where ~� is a constant. This allows us to write Eq. (11),
again looking for stationary solutions, in terms of f2 only:

�

4
@yyf2 ¼ ��0f2ð~�� �t þ f2Þ þ

�
�� 


2
�0
�
f32; (14)

where we have rewritten � ¼ �0ð�� �tÞ, with �0 inde-
pendent of �. Direct integration of Eq. (14) yields, under
the condition limy!
1f2ðyÞ ¼ 0, the following solution

f2ðyÞ ¼ 3ð�t � ~�Þ
1þ a coshð2y ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0ð�t � ~�Þ=�p Þ ; (15)

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9bð~�� �tÞ=2�0p

and b ¼ ���0
=2.
The value of ~� can be obtained from the conditionR
L �ðyÞdy ¼ L�0, where L is the size of the box. We can

neglect the exponentially decreasing tails in the integral
and solve the equation

R1
�1½�ðyÞ � ~��dy ¼ Lð�0 � ~�Þ.

Under the assumption L ! 1 we obtain

~� � �t � 2�0

9b
ð1� K1e

�K2LÞ; (16)

where K1 and K2 are positive quantities depending on �
and �0 whose expression we omit for compactness.

Substituting this value in the expression of a gives us a ¼
K1e

�K2L=2, yielding a width of the band proportional to L,
in agreement with observations on the microscopic model.
As L ! 1, the value of ~� converges to the asymptotic
value ~�gas.

To determine the surface fraction � occupied by the
ordered band, we use the relation �ð�band � �gasÞ þ
�gas ¼ �0. Substituting the value of �band obtained from

Eqs. (13) and (15) at y ¼ 0, we find for L ! 1

� ¼ 9b2ð�0 � �tÞ þ 2b�0

2�0ð
�0 þ 3bÞ : (17)

The condition 0<�< 1 yields the lower limit �min

and the upper limit �max of existence of the band solution.

FIG. 2 (color online). Numerically obtained density-segregated
solutions. (a) density and f2 profiles of a stationary banded
solution (f1 ¼ 0 throughout). The fronts linking the disordered
and ordered domains can be perfectly fitted to hyperbolic tangents
(not shown). (� ¼ 0:26, �0 ¼ 1, L¼100) (b, c, d) chaotic band
regime: snapshots of (respectively)�, jf1j, and jf2j. (� ¼ 0:2826,
�0 ¼ 1, L ¼ 200).

FIG. 3 (color online). Analytic band solutions for the slightly
simplified system (see text). (a) (�0, �) parameter plane with
basic instability line �t, stability limit of homogeneous ordered
phase �s, and limits of existence of band solutions �min and
�max. The short-dashed blue and red lines show the �gas and

�band density values of the band solutions for �0 ¼ 1 as a
function of � over their existence range [�min, �max], indicated
by the thin horizontal dashed violet lines. (b) variation with � of
�, the fraction of space occupied by the ordered part of the band
solution, for �0 ¼ 1.
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Its stability will be analyzed in a forthcoming paper [27].
All these results are presented in Fig. 3.

To summarize, using a ‘‘Boltzmann-Ginzburg-Landau’’
controlled expansion scheme, we derived a set of minimal
yet complete nonlinear field equations from the Vicsek
model with nematic alignment studied in Ref. [16]. This
simple setting allowed for a comprehensive analysis of
the linear and nonlinear dynamics of the field equations
obtained because our approach automatically yields a
‘‘meaningful manifold’’ parametrized by global density
and noise strength in the high-dimensional space spanned
by all coefficients of the continuous equations. Excellent
agreement was found (at a qualitative level) with the simu-
lations of the original microscopic model. The banded
solutions were studied analytically. Their existence domain
was found different from the region of linear instability of
the homogeneous ordered phase, stressing the importance
of a nonlinear analysis.Morework, beyond the scope of this
Letter, is needed to obtain a better understanding of the
chaotic regimes observed. To this aim, we plan to study the
linear stability of the band solutions in two dimensions.

Our equations (10) and (11) are simpler than those
written by Baskaran and Marchetti in Refs. [15,17], not
only because our microscopic starting point does not
include positional diffusion of particles. The method used
there seems intrinsically different, yielding more terms,
many with a different structure from ours, while some of
our nonlinear ones do not appear. It is not known yet
whether the equations of Ref. [17] can also account for
the nonlinear phenomena described above. Future work
should explore this point in some detail.

Finally, experiments showed that microtubules displaced
by a ‘‘carpet’’ of dynein motors move collectively and form
large vortical structures [6]. It was shown that a Vicsek
model with nematic alignment, but one in which the micro-
scopic noise is colored, accounts quantitatively for the
observed phenomena. Extending the approach followed
here to this case is the subject of ongoing work.
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