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We introduce a bipartite, diluted and frustrated, network as a sparse restricted Boltzmann machine and

we show its thermodynamical equivalence to an associative working memory able to retrieve several

patterns in parallel without falling into spurious states typical of classical neural networks. We focus on

systems processing in parallel a finite (up to logarithmic growth in the volume) amount of patterns,

mirroring the low-level storage of standard Amit-Gutfreund-Sompolinsky theory. Results obtained

through statistical mechanics, the signal-to-noise technique, and Monte Carlo simulations are overall in

perfect agreement and carry interesting biological insights. Indeed, these associative networks pave new

perspectives in the understanding of multitasking features expressed by complex systems, e.g., neural and

immune networks.
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Neural networks rapidly became the ‘‘harmonic oscil-
lators’’ of parallel processing: Neurons, thought of as
‘‘binary nodes’’ (spins) of a network, behave collectively
to retrieve information, the latter being spread over the
synapses, thought of as the interconnections among nodes.
However, common intuition of parallel processing is not
only the underlying parallel work performed by neurons to
retrieve, say, an image on a book, but rather, for instance, to
retrieve the image and, while keeping the book securely in
hand, noticing beyond its edges the room where we are
reading, still maintaining available resources for further
retrievals as a safety mechanism.

Standard Hopfield networks are not able to accomplish
this kind of parallel processing [1]. Indeed, spurious states,
conveying corrupted information, cannot be looked at as
the contemporary retrieval of several patterns, but they are
rather an unwanted outcome, yielding to a glassy blackout
[6]. Such a limit of Hopfield networks can be understood
by focusing on the deep connection (in both direct [7] and
inverse [8] approach) with restricted Boltzmann machines
(RBMs) [9]. In fact, given a machine with its set of visible
(neurons) and hidden (training data) units, one gets, under
marginalization over the latter, that the thermodynamic
evolution of the visible layer is equivalent to that of a
Hopfield network. It follows that an underlying fully con-
nected bipartite RBM necessarily leads to bit strings of
length equal to the system size and whose retrieval requires
an orchestrated arrangement of the whole set of spins. This
implies that no resources are left for further tasks, which is,
from a biological point of view, too strong a simplification.

The goal of this Letter is to relax this constraint so as to
extend standard neural networks toward multitasking capa-
bilities, whose interest goes far beyond the artificial intel-
ligence framework [10–12]. In particular, starting from a

RBM, we perform dilution on its links in such a way that
nodes in the external layer are connected to only a fraction
of nodes in the inner layer (Fig. 1, left). As we show, this
leads to an associative network which, for nonextreme
dilutions, is still embedded in a fully connected topology,
but the bit strings encoding for information is sparse
(i.e., their entries are þ1, �1, as well as 0) (Fig. 1, right);
for relatively low and large degrees of dilution, this ulti-
mately makes the network able to parallel retrieve without
falling into spurious states.
More precisely, let us denote the P binary spins making

up the external layer as �� ¼ �1, � 2 ½1; . . . ; P� and the

N binary spins making up the internal layer as �i ¼ �1,
i 2 ½1; . . . ; N�. RBMs admit the Hamiltonian description

Hð�; �;�Þ ¼ 1ffiffiffiffi
N

p XN;P

i;�

��
i �i��; (1)

FIG. 1 (color online). Example of diluted RBM, whose layers
are made up of N ¼ 5 and P ¼ 3 elements (left), and its
corresponding weakened associative network (right). In the
former, brighter (darker) links have positive (negative) coupling;
in the latter, the patterns turn out to be �1 ¼ ½�1;�1; 0; 0; 0�,
�2 ¼ ½þ1;þ1; 0;�1; 0�, �3 ¼ ½0;�1;þ1;þ1;þ1� and the
weight associated with each link (i, j) is

P
��

�
i �

�
j .
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where we called �
�
i the (quenched) interaction strength

between the ith spin of the inner layer and the �th spin of
the external layer [possibly to be extracted from a proper
probability distribution Pð��

i Þ, meant as the outcome of a
learning process]. Usually, one defines � ¼ limN!1P=N
as the storage value; in this work, we deal with the ‘‘low
storage’’ regime, i.e., P� logN, corresponding to � ¼ 0.

The thermodynamics of the system can be obtained by
explicit calculation of the (quenched) free energy fð�Þ via
the partition function ZN;Pð�Þ [13,14], which read off,

respectively, as

fð�Þ ¼ lim
N!1

1

�N
E logZN;Pð�Þ; (2)

ZN;Pð�Þ ¼
X
�;�

exp½��Hð�; �;�Þ�; (3)

E being the average over the quenched variables �. A key
point here is that the interaction is one body in each layer,
such that marginalizing over one spin variable is straight-
forward and gives (expanding up to second order the
hyperbolic cosine)

ZN;Pð�Þ ¼
X
�

YP
�¼1

�
cosh

�
�ffiffiffiffi
N

p XN
i

�
�
i �i

��
(4)

¼ X
�

e
ð�2=2NÞPN;N

i;j

P
P
�¼1
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�
j �i�j

¼ X
�

e
�ðN�2=2ÞPP

�¼1
m2

� ; (5)

where we introduced the P Mattis magnetizations m� ¼
N�1

P
N
i �

�
i �i. When Pð��

i ¼þ1Þ¼Pð��
i ¼�1Þ¼1=2,

the Hamiltonian implicitly defined in Eq. (5) recovers
exactly the Hopfield model (at a rescaled noise level �2)
and the ansatz of the pure state, i.e., m ¼ ð1; 0; . . . ; 0Þ
(under permutational invariance) [6], correctly yields the
proper minimization of the free energy in the low-noise
limit. This means that, once equilibrium is reached, the
system configuration� is aligned (under gauge invariance)
with pattern �1, relaxation that is understood as recovery of
a pattern of information.

As anticipated, here we remove the hypothesis of full
connection for the bipartite network, diluting randomly its
links in such a way that the coupling distribution gets

Pð��
i Þ ¼

1� d

2
���

i ;�1 þ 1� d

2
���

i ;þ1 þ d���
i ;0

; (6)

where d 2 ½0; 1� is a proper dilution parameter and �i;j is

the Kronecker delta. It is easy to see that, with this distri-
bution, after marginalizing over one layer as usual, we get
an associative network, where the P patterns �� (� ¼
1; . . . ; P) contain zeros, on average, for a fraction d of their
length (a sparse coding can also be found in Willshaw’s
model [15]). As a result, the pure state ansatz can no longer

work. In fact, now the retrieval of a pattern does not
employ all spins and those corresponding to null entries
can be used to recall other patterns.
In particular, as we will show (see also Fig. 2), at a

relatively low degree of dilution (d < dc1), one pattern, say

� ¼ 1, is perfectly retrieved, while a fraction d of spins is
still available and its overlap with any remaining pattern
is, on average, 1� d; hence, the second best-retrieved
pattern, say � ¼ 2, displays a (thermodynamical and
quenched) average of the Mattis magnetization equal to
dð1� dÞ. Proceeding analogously, one finds

mk ¼ dk�1ð1� dÞ: (7)

The overall number of retrieved patterns K therefore cor-
responds to

P
K�1
k¼0 ð1� dÞdk ¼ 1, with the cutoff at finite N

as ð1� dÞdK�1 � N�1, due to discreteness. For any fixed
and finite d, this implies K & logN, which can be thought
of as a ‘‘parallel low-storage’’ regime of neural networks.
On the other hand, at larger degrees of dilution (d > dc1)

and P> 2, this state is no longer stable since no magneti-
zation is large enough to yield a field �

�
i m� able to align all

the related (��
i � 0) spins; as a result, the system falls into

a spurious state where all patterns are partially retrieved,
but none exactly. Finally, when dilution is extreme
(1� d� P�1), the retrieval of (nearly) all patterns can
still be accomplished. Whenever the global minimum of
the system corresponds to the perfect retrieval of at least
one pattern, we refer to ‘‘multitasking capabilities’’ or,
analogously, to ‘‘parallel retrieval.’’
Before proceeding with the thermodynamic analysis, we

stress that the dilution introduced here is deeply different
from the one introduced earlier by Sompolinsky [16] or
more recently by Coolen et al. [17], who worked out the
Hopfield model embedded in random networks, ranging
from Erdös-Rényi graphs to small worlds. In those

FIG. 2 (color). Schematic representation of the different re-
gimes exhibited by the systems at � ! 1; here, we fixed P ¼ 7,
for which dc1 � 0:51, dc2 � 0:89. Solid (dashed) line frames

denote global (local) minima. The states depicted correspond to
Eqs. (7) (parallel state) and (11) (hybrid state).
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systems, obtained by directly diluting the Hopfield net-
work, the exciting result was the robustness of the (single)
retrieval under dilution.

Such different ways of performing dilution—either on
links of the associative network (see Ref. [16]) or on
pattern entries [see Eq. (6)]—yield dramatically different
thermodynamic behaviors. To see this, let us consider the
field insisting on each spin, namely, for the generic ith spin
’i ¼ N�1

P
N
i�j¼1

P
P
�¼1 �

�
i �

�
j �j, and analyze its distribu-

tion Pð’jdÞ at zero-noise level. When dilution is realized
on links in the direct �-� network (here d is the fraction of
links cut), only an average fraction d of the N available
spins participates to’, in such a way that both the peak and
the span of the distribution decrease with d (Fig. 3, left).
Conversely, when dilution is realized on links in the under-
lying bilayer �-� network (here d is the fraction of null
entries in a pattern), as d > 0, Pð’jdÞ gets broader and
peaked at smaller values of fields. Indeed, at �, N and P
fixed, when dilution is introduced in bit strings, couplings
are made uniformly weaker (this effect is analogous to a
rise in the fast noise), so that the distribution of spin
configurations, and consequently also Pð’jdÞ, gets
broader. For small values of d this effect dominates, while
at larger values the overall reduction of coupling range
prevails and fields get not only smaller but also more
peaked (Fig. 3, right). A topological dilution in the result-
ing�-� network can also be realized in this case, by taking
d sufficiently close to 1 [10].

These different scenarios produce different physics, in
particular, the latter field distribution can allow parallel
retrieval of patterns. The robustness of these multiple
basins of attractions can be checked by signal-to-noise

analysis [10] and by solving the statistical mechanics of
the model as sketched in the following. We underline that,
as no slow noise due to an extensive amount of patterns is
at work (� ¼ 0), replica tricks or techniques designed
for disordered systems [13,14] are not necessary. We
introduce a generic vector for Mattis magnetizations as
m ¼ ðm1; . . . ; mPÞ, a density of the states DðmÞ ¼
2�N

P
��½m�mð�Þ�, and we write the free-energy den-

sity as

fð�Þ ¼ ln2

�
þ 1

�N
log

Z
dmDðmÞ exp

�
1

2
�Nm2

�
: (8)

After introducing the P-component vector x to allow inte-
gral representation of the P delta functions encoded in the
density of the states, and after some algebra, this equation
becomes

fðm;xÞ ¼ � 1

�N

Z
dmdx exp½�N�~fðm;xÞ�; (9)

~fðm;xÞ ¼ � 1

2
m2 � ix �m� 1

�
hlog2 cos½�� � x�i�;

(10)

whose minimization with respect to m, x gives the stan-
dard saddle point equation m ¼ h� tanhð�� �mÞi�, whose
numerical solution for the case P ¼ 2 is shown in Fig. 4.
When � ! 1, stable retrieved states of amplitude m1 ¼
1� d and m2 ¼ dð1� dÞ are found, in agreement with
Eq. (7). On the other hand, in the presence of (fast) noise,
the dependence on d of the network performance gets more
complex. In fact, for small d, only the first pattern can
be retrieved (whenever the fast noise is greater than the
signal on m2) and the parallel ansatz m ¼ ðd; dð1� dÞ;
dð1� dÞ2; . . . Þ recovers the standard pure one (which can
be seen as a particular case of the former). This Hopfield-
like behavior persists as long as dð1� dÞ<��1, above
which m2 also starts to grow and approaches the related
zero-noise curve. At intermediate degrees of dilution, the
two magnetizations m1, m2 collapse and their amplitude
decreases monotonically towards zero. When d� 1, the
signal on both magnetizations is smaller than fast noise so
that retrieval is no longer possible and the system behaves
paramagnetically. We now explain these features in more
detail: We focus on the critical points corresponding to
vanishing of magnetizations and to bifurcations, again
for the simplest case P ¼ 2. The self-consistency
equations are

m1 ¼ dð1� dÞ tanhð�m1Þ

þ ð1� dÞ2
2

½tanhð�yÞ þ tanhð�xÞ�;
m2 ¼ dð1� dÞ tanhð�m2Þ

þ ð1� dÞ2
2

½tanhð�yÞ � tanhð�xÞ�;

FIG. 3 (color). Distributions of fields ’ for dilution à la
Sompolinsky (left) and for our dilution performed on the bipar-
tite network (right), shown for various degrees of dilution,
as explained by the legend; for both systems we fixed � ! 1,
N ¼ 5000, and � ¼ 0:05. In the former case, d represents the
average fraction of cut links, in the latter case d represents the
average fraction of null pattern entries. As d is tuned, on the left,
Pð’jdÞ behaves monotonically corresponding to a Hopfield
model embedded on a random graph sparser and sparser, while,
on the right, Pð’jdÞ does not behave monotonically and the
model is still defined on a fully connected topology.
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where y ¼ m1 þm2 and x ¼ m1 �m2. The critical noise
level at which the magnetizations disappear can be
obtained by expanding the self-consistent equation for
m2, namely, m2 � ð1� dÞ�m2 þOðm3

2Þ. Therefore, from
a standard fluctuation analysis, the critical noise level for
the two patterns turns out as �c ¼ ð1� dÞ�1, which recov-
ers �c ¼ 1 for the standard Hopfield model away from
saturation [6]. Critical values of the noise level corres-
ponding to bifurcations can be obtained by expanding for
small x, and such calculations can be extended to the case
P> 2 (see Fig. 5); an extensive treatment of the network
performances can be found elsewhere [10].

In general, as mentioned above, the case P> 2 can be
much more subtle as, even in the noiseless case, it exhibits
several phases (see Fig. 2): the parallel ansatz [Eq. (7)]
ceases to be stable when m1 � P

k>1mk, which corre-
sponds to a critical dilution dc1 approaching (exponentially

from above) 1=2 in the limit of large P. Within the same
region, a ‘‘hybrid state’’ ~s, which is a hierachical mixture
of all patterns, is also found to be metastable. More pre-
cisely, being � ¼ P

��
�
i ,

~si ¼ ð1� ��;0Þsgnð�Þ
þ ��;0½�1

i þ ��1
i ;0
�2
i þ ��1

i ;0
��2

i ;0
�3
i þ � � ��: (11)

This state gets the global minimum whenever
P

ið1���;0Þ
sgnð�Þ��

i =N>
PðP�1Þ=2

k¼1 ’kðPþ1Þ=ðP�kÞ, where ’k¼
2
P

l½ð1�dÞ=2�2ldP�2lðP�kÞ!=½l!ðl�1Þ!ðP�k�2lþ1Þ!�
and P is odd. This condition corresponds to d > dc2 , where

dc2 converges to 1 as P gets larger.

As a final remark, we underline that, although the steady
state of the current model and an arbitrary spurious state
both display nonzero overlap with several patterns, they are
still deeply different. In particular, here the retrieval of
multiple patterns corresponds to absolute energy minima
(in the noiseless case this holds for any d > 0) and at least
one pattern is exactly retrieved. However, the present
model is not devoid of genuine spurious states, which
are, in general, mixtures of all patterns. These states can
be destabilized by decreasing � (analogously to the

standard Hopfield model) or, interestingly, by either
increasing or decreasing d.
In summary, the structural equivalence of associative

networks and RBMs allows significant developments,
both practical and theoretical. For instance, one can simu-
late the dynamics of these networks by dealing with an
update of N þ P spins and a storage of only NP synapses,
instead of updating N spins and storing �N2 synapses.
Moreover, the equivalence suggests that traditional asso-
ciative networks, where the whole set of neurons needs to
be properly arranged in order to achieve retrieval, are not
optimal. We overcome this constraint by diluting the links
of the RBM, which translates into partially blank patterns.
Interestingly, the resulting associative network is not only
still able to perform retrieval, but it can actually retrieve
several contemporary patterns, without falling into spuri-
ous states. This is an important step toward real autono-
mous parallel processing and may find applications not
only in artificial intelligence [12] but also in biological
contexts [11]. For instance, when applied to the modeling
of the adaptive immune system, this result allows us to see
that the (lymphocyte) network is able to successfully re-
spond to several pathogens at once [10].
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[14] M. Mézard, G. Parisi, and M.A. Virasoro, Spin Glass
Theory and Beyond (World Scientific, Singapore, 1987).

[15] D. Golomb, N. Rubin, and H. Sompolinsky, Phys. Rev. A
41, 1843 (1990).

[16] H. Sompolinsky, Phys. Rev. A 34, 2571 (1986).
[17] B. Wemmenhove and A. C. C. Coolen, J. Phys. A 36, 9617

(2003).

PRL 109, 268101 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 DECEMBER 2012

268101-5

http://dx.doi.org/10.1162/neco.1993.5.1.1
http://dx.doi.org/10.1162/neco.1993.5.1.1
http://dx.doi.org/10.1088/0305-4470/23/4/026
http://dx.doi.org/10.1088/0305-4470/23/4/026
http://dx.doi.org/10.1093/cercor/13.5.435
http://dx.doi.org/10.1093/cercor/13.5.435
http://dx.doi.org/10.1016/j.neunet.2012.06.003
http://arXiv.org/abs/0912.5409
http://dx.doi.org/10.1561/2200000006
http://arXiv.org/abs/1202.6326
http://dx.doi.org/10.1007/s10955-010-0020-y
http://dx.doi.org/10.1007/s10955-010-0020-y
http://dx.doi.org/10.1103/PhysRevA.41.1843
http://dx.doi.org/10.1103/PhysRevA.41.1843
http://dx.doi.org/10.1103/PhysRevA.34.2571
http://dx.doi.org/10.1088/0305-4470/36/37/302
http://dx.doi.org/10.1088/0305-4470/36/37/302

