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We present a theoretical study of the broadening of defect luminescence bands due to vibronic coupling.

Numerical proof is provided for the commonly used assumption that a multidimensional vibrational

problem can be mapped onto an effective one-dimensional configuration coordinate diagram. Our

approach is implemented based on density functional theory with a hybrid functional, resulting in

luminescence line shapes for important defects in GaN and ZnO that show unprecedented agreement

with experiment. We find clear trends concerning effective parameters that characterize luminescence

bands of donor- and acceptor-type defects, thus facilitating their identification.
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Defects play a key role in the properties of solids. From
the early days of color centers, the study of luminescence
and absorption has been crucial to defect characterization
[1]. Theoretical efforts to calculate the broadening of
optical transitions at defects due to the interactions with
lattice vibrations were pioneered by Huang and Rhys [2]
and Pekar [3]. While those theories and their generaliza-
tions [1,4] have been very successful in describing the
shape of experimental optical bands [1,5], this inevitably
required the use of empirical fitting parameters. Theory has
thus been limited in its ability to aid the microscopic
identification of defects or produce accurate predictions.

In this Letter, we report that unprecedented precision
can now be achieved by rigorously mapping the multi-
dimensional vibrational problem onto an effective one-
dimensional configuration coordinate diagram, combined
with advanced electronic structure techniques [6,7].
We demonstrate the power of the approach with the ex-
ample of a number of defects in GaN [5] and ZnO [8], two
technologically crucial wide-band-gap semiconductors.
Excellent agreement with experiment is achieved for
well-characterized defects, and new insights into vibronic
coupling emerge.

Our electronic structure calculations are based on den-
sity functional theory using the hybrid functional of
Ref. [7] in the VASP code [9]. The fraction� of the screened
Fock exchange admixed to the semilocal exchange was set
to 0.31 for GaN and 0.36 for ZnO to obtain band gaps very
close to experimental ones (3.5 and 3.3 eV). By describing
bulk electronic structure better and reducing self-
interaction errors, hybrid functionals substantially improve
the accuracy of defect calculations [10–12]. Defects were
treated via the supercell approach [6], the interaction with
nuclei was described within the projector-augmented wave
formalism [9], and electron wave functions were expanded
in plane waves with a cutoff of 400 eV. Normal modes
and frequencies have been calculated by using finite
differences.

We illustrate the methodology with the example of the
MgGa acceptor in GaN, a crucial defect since it is the only
acceptor impurity capable of making the material p type.
While electrically acting as a shallow impurity with
modest ionization energy, optically MgGa behaves as a
deep center [13]: Recombination of an electron at the
conduction-band minimum with a hole localized on the
neutral Mg0Ga acceptor gives rise to a broad blue lumines-

cence band [13]. The calculated zero-phonon line (ZPL)
energy (see Fig. 1) is 3.24 eV. We assume here that optical
transitions start with a delocalized charge carrier; excitonic
effects are small [14].
The general theory of luminescence was described in

Refs. [1,2,4]. When optical transitions are dipole allowed,
as is the case for the defects studied in this work, at finite T
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FIG. 1 (color online). 1D configuration coordinate diagram
describing optical absorption and emission at a point defect.
The minima of the ground-state and excited-state potential
energy surfaces are displaced. �Efe;gg are the relaxation energies
and �fe;gg the effective phonon frequencies. ZPL indicates the

zero-phonon line, i.e., the transition between the zero-point
vibrational states in excited- and ground-state configurations.
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the normalized luminescence intensity (line shape) in the
leading order can be written as Gð@!Þ ¼ C!3Að@!Þ,
where Að@!Þ is the normalized spectral function

Að@!Þ ¼ X

m;n

wmðTÞjh�emj�gnij2

� �ðEZPL þ @!em � @!gn � @!Þ; (1)

and C�1 ¼ R
Að@!Þ!3dð@!Þ. The sum runs over all vibra-

tional levels with energies @!em and @!gn of the excited

and the ground state [wmðTÞ being thermal occupation of
the former], � are ionic wave functions, and EZPL is the
energy of the ZPL. Such a formulation constitutes the
Franck-Condon approximation in which it is assumed
that the electronic transition dipole moment is independent
of ionic coordinates [1].

Evaluation of Að@!Þ is complicated by the fact that, first,
the sum includes all relevant vibrational degrees of free-
dom and, second, normal modes Qe and Qg in the excited

and the ground state are usually not identical. The two are
related via the Duschinsky transformation Qe ¼
JQg þ �Q [15], and h�emj�gni are thus highly multidi-

mensional integrals. For small molecular systems, recur-
sive techniques to calculate such integrals have been
developed [16] and implemented [17]. The large number
of vibrational modes that occur for defects in solids render
such a direct approach computationally prohibitive.

Broad optical bands have most often been described via
1D configuration-coordinate diagrams [1,4] [Fig. 1], based
on the assumption that the large number of vibrational
modes (with different frequencies) contributing to the
line shape can be replaced by a single effective mode
(sometimes a small number of modes). The parameters
entering the 1D model are the modal mass M of the
effective vibration, the displacement of the potential en-
ergy minima �R, and the effective frequencies�g and�e

[Fig. 1]. Based on these, the widely used ‘‘Huang-Rhys
(HR) factors’’ [2] are defined as the average number of
phonons created during a vertical transition: Sg ¼
�Eg=@�g and Se ¼ �Ee=@�e. There are many examples

where a 1D model with empirical fitting parameters pro-
vides a good approximation to experimental luminescence
line shapes [1,5]; still, because it is strictly valid only when
all the modes have the same frequency [2], its general
applicability has often been questioned. More importantly,
the use of fitting parameters precludes linking to poten-
tially valuable microscopic information about the defect
and limits the predictive power.

Here we address this problem by using the following
strategy. Vibrations that couple strongly to the distortion of
the geometry are expected to be dominant in Að@!Þ. Such
modes have finite weight on the atoms that experience the
largest relaxations, i.e., the atoms close to the defect. When
only a small number of atoms are included in calculating
vibrations, h�emj�gni can be evaluated exactly, taking

mode mixing into account [16,17]. This exact evaluation
can then serve as a test of the accuracy of any approxima-
tions. Once an approximate treatment has been validated in
this fashion, it can be applied to much larger systems of
atoms provided it is sufficiently less numerically demand-
ing than the exact evaluation.
In the case ofMg0Ga, a hole is localized on an N neighbor

of the Mg atom, and the five atoms surrounding this hole
account for more than 90% of the whole relaxation. The
calculated luminescence line shape, taking mixing between
the resulting 15 vibrations into account, is shown in Fig. 2.
Multidimensional overlap integrals were calculated by
using the MOLFC code [17]. We have applied a Gaussian
smearing with a small � ¼ 0:01 eV to simulate additional
broadening mechanisms, resulting in a smooth line shape.
Recursive algorithms [16] lead to exploding computa-

tional requirements when applied to larger atom clusters. A
simplification that is often used for molecules [17] and
almost always implied in solids [4] is the parallel-mode
approximation, in which the eigenmodes of either the
ground state or the excited state are chosen as common
vibrational states, leading to J ¼ 1. h�emj�gni then factor-

izes into 1D integrals, each corresponding to one vibra-
tional mode, greatly reducing computational complexity.
As seen in Fig. 2, the resulting line shape is indeed close to
the exact result. Therefore, while mode mixing is present,
it is not substantial.
Now that we have validated the parallel-mode approxi-

mation, we can include more atoms, since overlap integrals
become easy to calculate. However, the number of terms
that have to be included grows very rapidly with system
size. This reflects the fact that important modes often do
not occur in the gap of the bulk phonon spectrum but are
resonances and therefore not well localized in real space.
Consequently, further approximations are required. This
we achieve by devising a suitable 1D configuration-
coordinate diagram based on computed parameters as out-
lined below.
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FIG. 2 (color online). Normalized luminescence spectrum of
the MgGað0=�Þ transition, calculated by taking into account
vibrational modes of only those atoms that relax most (labeled
in the inset). Black solid line (and shaded area): Calculation
including mode mixing; blue dashed line: parallel-mode ap-
proximation; red solid line: effective 1D vibrational problem.
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The weight by which each normal mode k contributes to
the distortion of the defect geometry during optical tran-
sition can be written as pk ¼ ð�Qk=�QÞ2, where

�Qk ¼
X

�i

m1=2
� �R�iqk;�i; ð�QÞ2 ¼ X

k

�Q2
k: (2)

Here � labels atoms, i ¼ fx; y; zg, �R�i ¼ Re;�i � Rg;�i is

the distortion vector, Rfe;gg;�i are atomic coordinates, and

qk;�i is the unit vector in the direction of the normal mode k
(
P

�iqk;�iql;�i ¼ �k;l). We find that it is useful to define an

effective frequency

�2
fe;gg ¼ h!2

fe;ggi ¼
X

k

pfe;gg;k!2
fe;gg;k; (3)

where !fe;gg;k is the frequency of the mode qfe;gg;k.
Parameters EZPL, �Q, �g, and �e define a 1D

configuration-coordinate diagram (cf. Fig. 1) for a quan-
tum oscillator with unit mass and can be used to calculate
the luminescence line shape. Gaussian smearing is still
applied, but it should now reflect the replacement of
many vibrations at various frequencies with one effective
frequency. Inspection of the mean-square deviation for the
distribution of phonon frequencies that contribute to the
distortion leads to � ¼ 0:025 eV (� 0:6@�g). The result

for MgGa in Fig. 2 shows that our rigorously defined 1D
model is an excellent approximation to the multidimen-
sional calculations.

Now that the validity of the 1D model has been estab-
lished, it can be extended to larger numbers of atoms,
and we no longer need to explicitly calculate normal modes
and frequencies to determine the effective parameters
�Q [Eq. (2)] and �fe;gg [Eq. (3)]. Indeed, by inserting

the expression for �Qk into the one for �Q in Eq. (2),
one can show that, when all the atoms in the supercell are
included in the vibrational problem, ð�QÞ2 ¼P

�;im��R
2
�i. The modal mass is defined via �Q ¼

M1=2�R, where ð�RÞ2 ¼ P
�;i�R

2
�i. Effective frequencies

� can be obtained by mapping the potential energy surface
around the respective equilibrium geometries along the
path that linearly interpolates between the two geometries
[18]. A third-order polynomial fit was found to suffice in
all cases. The frequency � in the quadratic term defined
in this way is equivalent to the one calculated from Eq. (3).
In the case of low-temperature spectra, third-order anhar-
monic corrections that affect vibrational wave functions
and thus overlap integrals were included in the calculations
of the spectral function perturbatively. For all subsequent
calculations, we have used 96-atom wurtzite supercells,
and relaxations of all the atoms were included in determin-
ing effective parameters. The resulting parameters are
summarized in Table I.
The luminescence line shape Gð@!Þ for MgGa at

T ¼ 0 K is shown in Fig. 3(a), together with experimental
low-temperature data from Refs. [19,20]. To facilitate
comparison with experiment, the calculated line shapes
were shifted to bring the maximum of the luminescence
in agreement with that of the experimentally measured
curves. The magnitude of the shift provides an estimate
for the error in the EZPL (thermodynamic transition level)
and is less than 0.12 eV for all defects. This error bar
reflects both the remaining inaccuracy of even the most
advanced first-principles methods and any electrostatic
corrections (such as excitonic effects or donor-acceptor
interactions) not included in the present model. The width
of the theoretical band (0.44 eV) is only slightly larger than
the experimental value of 0.36–0.37 eV. We derive the
effective vibrational frequency in the ground state @�g ¼
47 meV, and the HR factor Sg ¼ 12:2. Overall, the good

agreement between the calculated and experimental line
shapes for MgGa attests to the power of the approach
presented here, when used in combination with state-of-
the-art density functional calculations.
The agreement with experiment is even better for our

second example, CN. This defect has been suggested as a
source of yellow luminescence (YL) [5,22,23] based on the

TABLE I. Effective parameters for various defect-related luminescence transitions in GaN and ZnO. �Q and �R: Total mass-
weighted and total distortions; M: modal mass; @�fe;gg: effective frequencies in the ground and excited states (charge state in

parentheses); EZPL: zero-phonon line energy; FWHM: full width at half maximum of the band; T: temperature for which the FWHM is
given; Sfe;gg: Huang-Rhys factors. If experimental parameters are not explicitly given in the corresponding experimental papers, they

are extracted by using the original data and are shown in italics.

Defect, charge states,

and optical transition Method

�Q

(amu1=2 �A)

M

(amu)

�R

(Å)

@�g

(meV)

@�e

(meV)

EZPL

(eV)

FWHM at T

(eV, K) Sg Se

MgGa (0=�) in GaN Theory 1.59 45 0.24 47 (� ) 34 (0) 3.24 [13] 0.44 at 0 K 12.2 � � �
Mg0Ga þ e� ! Mg�Ga Expt. 3.30 [19] 0.36 at 13 K [19]

3.36 [20] 0.37 at 8 K [20]

CN (0=�) in GaN Theory 1.55 51 0.22 42 (� ) 36 (0) 2.60 [21] 0.35 at 77 K 11.2 10.3

C0
N þ e� ! C�

N Expt. 41� 5 40� 5 [22] 2.64 [22] 0.39 at 77 K [23] 12:8� 1:6 13:4� 1:7 [22]

VN (þ3=þ2) in GaN Theory 3.72 68 0.45 23 (þ 2) 21 (þ 3) 3.02 [24] 0.33 at 0 K 36.0 34.8

Vþ3
N þ e� ! Vþ2

N Expt. 3.07 [25] 0.36 at 5 K [25]

NO (0=�) in ZnO Theory 1.92 48 0.28 40 (� ) 32 (0) 2.20 [12] 0.54 at 300 K 15.3 15.1

N0
O þ e� ! N�1

O Expt. 2.30 [26] 0.55 at 300 K [26]

PRL 109, 267401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 DECEMBER 2012

267401-3



transition C0
N þ e� ! C�

N [21] (where e� is an electron at
the conduction-band minimum). This defect again exhibits
hole localization in the neutral charge state, but now the
hole is localized on the C atom [21]. The calculated
luminescence line shape at T ¼ 77 K [Fig. 3(b)] agrees
very well with the measurements of Ref. [23], in which YL
was convincingly attributed to a C-related defect. Our
calculated effective frequencies (@�fe;gg ¼ 36, 42 meV)

and HR factors (Sfe;gg ¼ 10:3, 11.2) are in excellent agree-

ment with those measured in Ref. [22] (Table I).
Our next example is VN. Nitrogen vacancies have low

formation energies in p-type GaN, and they have been
suggested [24] as a cause of the YL in p-GaN observed
in Ref. [25]. The calculated luminescence line shape for
the transition Vþ3

N þ e� ! Vþ2
N [Fig. 3(c)] shows impres-

sive agreement with these low-temperature experiments.
To demonstrate that the approach is not limited to GaN,

in Fig. 3(d) we compare the calculated and measured [26]
luminescence line shapes at T ¼ 300 K for the deep NO

acceptor in ZnO, corresponding to the transition N0
O þ

e� ! N�1
O [12]. The agreement between theory and ex-

periment is again extremely good.
Our ability to calculate accurate parameters allows us to

examine some general trends. For the two substitutional
acceptors in GaN analyzed above, total distortions �R
amount to 0.22–0.24 Å, and HR factors to 10–12, irrespec-
tive of whether the hole is bound to C or N. Other acceptors
with anion-bound holes (VGa, BeGa, and ZnGa) show very
similar behavior. The donor VN, on the other hand, is very

different. Its defect wave function is composed mainly of
Ga 4s states, and �R associated with the (þ 3=þ 2)
transition is 0.45 Å, almost twice as large as in the case
of acceptors. The distortion mostly affects the four nearest
Ga atoms, leading to a large modal mass and small effec-
tive frequencies (Table I). In conjunction with large relaxa-
tion energies (0.72 and 0.82 eV), this results in very large
HR factors (Sfe;gg ¼ 34:8, 36.0). This is in contrast with the

acceptors, where anions are involved in the distortion,
leading to smaller modal masses, higher effective vibra-
tional frequencies, and hence more than twice smaller HR
factors. Similar trends are observed for ZnO: We find
@�fe;gg ¼ 28–40 meV and Sfe;gg < 30 for acceptors with

anion-localized holes (NO, VZn, and LiZn), while @�fe;gg ¼
16, 21 meVand Sfe;gg � 50 for donors with cation-derived

states (VO). The general result for acceptors in ZnO is in
accord with experimental data of Ref. [27].
While such a posteriori interpretations are simple and

intuitive, they are reliable only if based on an accurate
microscopic description of the defect. We note that model
calculations have yielded results that were very different
from our first-principles values (e.g., S ¼ 3:5–6:5 for
defects related to YL in Ref. [28]), starkly illustrating the
shortcomings of such approaches.
High values of HR factors mean that it is very difficult to

determine the ZPL in experimental luminescence spectra.
Indeed, the weight of the ZPL is exponentially suppressed
for larger S: jh�e0j�g0ij2 � expf�Sfe;ggg (equality holds

for �g ¼ �e [2]). As seen in Fig. 3, this complication

arises for all the defects studied here and is especially
apparent for VN. This highlights the practical use of calcu-
lations exemplified in the current work.
The examples have demonstrated that our methodology

is capable of producing luminescence line shapes in very
good agreement with experiment, as well as quantities
that can be directly compared with experimental parame-
ters. The achieved agreement is based on the accuracy of
the underlying electronic structure method but also on the
applicability of the 1D model to broad luminescence
bands. While the explicit consideration of many vibra-
tional modes is sometimes needed to understand the
experimental spectra when S � 1 (i.e., defects with mod-
erate electron-phonon coupling) [1,4,29], we have demon-
strated that a 1D model with suitably calculated parameters
is valid for defects with large electron-phonon coupling
(S � 1), even if many phonon modes couple to the optical
transition. Our calculations have provided theoretical
evidence that the effective mode frequency is usually
indeed much smaller than that of longitudinal-optical
(LO) phonons (91 meV in GaN and 73 meV in ZnO),
contrary to what has been often assumed in phenomeno-
logical approaches [2,28]. Our conclusion is in full agree-
ment with detailed experimental measurements for color
centers in alkali halides [30], indicating the generality of
the obtained result.
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FIG. 3 (color online). Calculated (solid lines) and measured
(symbols) luminescence line shapes for (a)MgGa in GaN, (b) CN

in GaN, (c) VN in GaN, and (d) NO in ZnO. The arrows indicate
the ZPL, and the calculated spectra were shifted by �0:1 eV, as
discussed in the text. In (a), the experimental spectrum of
Ref. [19] has been used as a reference in this procedure.
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Our findings are important for future studies of semi-
conductors and insulators that exhibit broad defect lumi-
nescence bands. In particular, the developed methodology
will assist the identification of the microscopic origin of
numerous as yet unassigned bands in technologically
important wide-band-gap materials. More generally, our
work attests to the success of first-principles methods to
describe electron-phonon interactions in solids [31] be-
yond the application to perfect crystals.
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106, 115 (2004).
[24] Q. Yan, A. Janotti, M. Scheffler, and C.G. Van de Walle,

Appl. Phys. Lett. 100, 142110 (2012).
[25] G. Salviati, N. Armani, C. Zanotti-Fregonara, E. Gombia,

M. Albrecht, H. P. Strunk, M. Mayer, M. Kamp, and A.
Gasparott, MRS Internet J. Nitride Semicond. Res. 5S1,
W11.50 (2000).

[26] M. C. Tarun, M. Zafar Iqbal, and M.D. McCluskey, AIP
Adv. 1, 022105 (2011).

[27] M.A. Reshchikov, K. Garbus, G. Lopez, M. Ruchala, N.
Nemeth, and J. Nause, Mater. Res. Soc. Symp. Proc. 957,
0957-K07-19 (2006).

[28] B. K. Ridley, J. Phys. Condens. Matter 10, L461 (1998).
[29] M.K. Kretov, I.M. Iskandarova, B.V. Potapkin, A. V.

Scherbinin, A.M. Srivastava, and N. F. Stepanov, J.
Lumin. 132, 2143 (2012).

[30] G. E. Russel and C. C. Klick, Phys. Rev. 101, 1473 (1956).
[31] F. Giustino, M. L. Cohen, and S.G. Louie, Phys. Rev. B

76, 165108 (2007).

PRL 109, 267401 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

28 DECEMBER 2012

267401-5

http://dx.doi.org/10.1098/rspa.1950.0184
http://dx.doi.org/10.1063/1.1700283
http://dx.doi.org/10.1103/RevModPhys.31.956
http://dx.doi.org/10.3367/UFNr.0128.197905b.0031
http://dx.doi.org/10.3367/UFNr.0128.197905b.0031
http://dx.doi.org/10.1063/1.1868059
http://dx.doi.org/10.1063/1.1868059
http://dx.doi.org/10.1063/1.1682673
http://dx.doi.org/10.1063/1.1682673
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1992666
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.59.1758
http://dx.doi.org/10.1103/PhysRevB.63.054102
http://dx.doi.org/10.1103/PhysRevB.63.054102
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1103/PhysRevLett.101.046405
http://dx.doi.org/10.1002/pssb.201046195
http://dx.doi.org/10.1002/pssb.201046195
http://dx.doi.org/10.1063/1.3274043
http://dx.doi.org/10.1063/1.3274043
http://dx.doi.org/10.1103/PhysRevLett.108.156403
http://dx.doi.org/10.1103/PhysRevLett.108.156403
http://dx.doi.org/10.1103/PhysRevB.54.16369
http://dx.doi.org/10.1016/0022-2852(77)90269-7
http://dx.doi.org/10.1016/0022-2852(77)90269-7
http://dx.doi.org/10.1063/1.1609979
http://dx.doi.org/10.1063/1.1609979
http://dx.doi.org/10.1116/1.3533269
http://dx.doi.org/10.1116/1.3533269
http://dx.doi.org/10.1103/PhysRevB.59.13176
http://dx.doi.org/10.1103/PhysRevB.59.13176
http://dx.doi.org/10.1063/1.371242
http://dx.doi.org/10.1063/1.371242
http://dx.doi.org/10.1063/1.3492841
http://dx.doi.org/10.1063/1.3492841
http://dx.doi.org/10.1143/JJAP.19.2395
http://dx.doi.org/10.1016/j.jlumin.2003.08.004
http://dx.doi.org/10.1016/j.jlumin.2003.08.004
http://dx.doi.org/10.1063/1.3699009
http://dx.doi.org/10.1063/1.3582819
http://dx.doi.org/10.1063/1.3582819
http://dx.doi.org/10.1557/PROC-0957-K07-19
http://dx.doi.org/10.1557/PROC-0957-K07-19
http://dx.doi.org/10.1088/0953-8984/10/27/003
http://dx.doi.org/10.1016/j.jlumin.2012.03.067
http://dx.doi.org/10.1016/j.jlumin.2012.03.067
http://dx.doi.org/10.1103/PhysRev.101.1473
http://dx.doi.org/10.1103/PhysRevB.76.165108
http://dx.doi.org/10.1103/PhysRevB.76.165108

