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1ICFO-Institut de Ciències Fotòniques, Parc Mediterrani de la Tecnologia, 08860 Castelldefels, Spain
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We consider the Ising model in a transverse field with long-range antiferromagnetic interactions that

decay as a power law with their distance. We study both the phase diagram and the entanglement

properties as a function of the exponent of the interaction. The phase diagram can be used as a guide for

future experiments with trapped ions. We find two gapped phases, one dominated by the transverse field,

exhibiting quasi-long-range order, and one dominated by the long-range interaction, with long-range Néel

ordered ground states. We determine the location of the quantum critical points separating those two

phases. We determine their critical exponents and central charges. In the phase with quasi-long-range

order the ground states exhibit exotic corrections to the area law for the entanglement entropy coexisting

with gapped entanglement spectra.
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Long-range (LR) interactions have attracted a lot of
attention since they could produce interesting new phe-
nomena [1–4]. Recently there have been impressive advan-
ces in controlling experimentally quantum systems. In
particular it has been shown by Britton et al. [5] that LR
Ising anti-ferromagnetic interactions can be induced in
trapped beryllium ions. This is only the most recent of a
series of experimental results on using trapped ions to
simulate spin models [6–8]. Motivated by these results
we analyze the phase diagram of the antiferromagnetic
LR Ising Hamiltonian in the presence of a transverse field
(LITF). The difference with the standard Ising model in a
transverse field (ITF) is that the two-body interactions
extend to all spins and decays with their distance r as
r�� with �> 0.

For the LITF we (i) the determine the full phase diagram
as a function of � (ii) quantify the increase of complexity
induced by the LR interaction for the classical simulation
of the model and (iii) characterize the phase transitions.

Regarding both (i) and (iii), we identify two different
phases. One of them, dominated by the local part of the
Hamiltonian, is gapped and presents patterns of quasi-
long-range order (QLRO) induced by the LR part of the
Hamiltonian. This is exotic, since normally QLRO is asso-
ciated to gapless phases. The other, dominated by the LR
terms of the Hamiltonian, presents antiferromagnetic LR
order (LRO) in the form of Néel ground states. Between
them, we observe a line of quantum phase transitions,
whose nature depends on the value of �. They either are
in the same universality class than the ITF (�> 2:25), or
present new universal behaviors (for � � 2:25).

Concerning (ii), we focus on the entanglement entropy
of the ground states of the LITF as a function of both � and
system size. A common belief, (see, however, Ref. [9] for
an updated perspective) relates the amount of entangle-
ment in a state with its classical simulability [10,11].

This translates into the fact that those states that obey the
‘‘area law’’ for the entanglement, can be simulated classi-
cally. For example, all ground states of gapped short range
(SR) Hamiltonians obey the ‘‘area law’’ [12,13]. Here we
show that the ground states of the LITF can violate it. The
violations are at most logarithmic in the system size so that
the ground state of the LITF can still be approximated
efficiently with matrix product states (MPS) [14].
Our studies complement the existing one in several

ways. On one side most of the literature has focused
on LR dipolar interactions decaying with the distance
as r�3 [15–20]. Much less has been done for a generic
LR interactions of the type r�� as the one we consider
here [21–23]. For these systems, even less has been
done with respect to the interplay between antiferromag-
netism and LR interactions [24,25] (in the context of
classical spin-glasses people have worked on related
LR models, see for example Ref. [26] and references
therein).
From the point of view of the complexity of the ground

states, Eisert and Osborne have constructed, in the context
of fermions interacting through a unshielded Coulomb
potential (� ¼ 1), a specific example of a long-range
gapped Hamiltonian with logarithmic corrections to the
entanglement entropy in Ref. [27]. Here we find that the
phenomenon is more general. For the LITF the corrections
are there not only at � ¼ 1 but also for arbitrary � � 2
(surprisingly, we do not find any stronger corrections for
the small �s). In the same phase, for �> 2 the corrections
are sub-logarithmic. Finally, we also identify a phase with
no corrections at any �. The corrections coincide with not
only a gapped Hamiltonian but also with a gapped entan-
glement spectrum.
As a side result, we have improved current MPS tech-

niques by generalizing the time dependent variational
principle (TDVP) [28,29] to LR interactions (alternative
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approaches are available [16,17,19,20,30,31]). The gener-
alization is described in the Supplemental Material [32].

The model.—We study a one dimensional spin chain
with open boundary conditions. We analyze the ground
state of the system described by the LITF Hamiltonian

Hð�; �Þ ¼ sinð�ÞX
i;j

1

ji� jj� �
i
x�

j
x þ cosð�ÞX

i

�i
z; (1)

where i, j are two arbitrary points of the 1D chain, � � 0.
We consider the antiferromagnetic regime, 0 � � � �

2 .

This is the interesting regime for the experimental results
in Ref. [5] and we are interested in studying the interplay
between LRO and frustration; it is worth remarking that the
ferromagnetic LITF has been already studied elsewhere
[1,2,22].

The phase diagram is obtained through the entanglement
entropy of half system defined as

SL=2 ¼ �tr�L=2 log�L=2; (2)

where �L=2 ¼ tri1���iL=2 j�ih�j and j�i is the ground state

of the system. We use the maxima of SL=2 as the signature
for the phase transitions.

We then analyze the entanglement spectrum (ES)
defined in terms of the logarithm of the reduced density
matrix

hi ¼ logð�iÞ; (3)

where �i are the eigenvalues of �L=2. For � > �c the ES

can be fully described by using perturbation theory (PT).
For � < �c we observe both a perturbative and a non-
perturbative regime depending on the value of �.

At the critical point we consider the finite size scaling of
the correlation functions

h�L=2
x �L=2þL=5

x i / L�2�x ; h�L=2
z �L=2þL=5

z i / L�2�z :

(4)

The corresponding exponents, as a function of � define the
universality class and present two different regimes. A SR
regime, where the critical exponents are the ones of the
ITF, and a LR regime, where the exponents vary continu-
ously with �.

Numerical results.—We use MPS techniques [33]
through a variational algorithm (known as TDVP
[28,29]) to obtain the best possible MPS for the ground
state of 1. In order to deal with the LR, the Hamiltonian is
encoded in a matrix product operator [33] in a way to
correctly reproduce the desired power law r�� in the range
of distances 1� r�L=2 [34]. This requires an extension of
the original TDVP algorithm (described in the Supple-
mental Material [32]). We have performed simulations of
finite chains with length L in the range 20<L< 150 and
open boundary conditions. For each simulation, we have
increased the MPS bond dimension � up to convergence

using the criterion described described in the Supplemental
Material [32]. This typically happens at values of � � 100.
Phase diagram.—In the antiferromagnetic case for all

values of�> 0 the system shows two phases. For values of
�� 0, � � �cð�Þ, the ground state j�i can be understood
as a perturbative modification of the product state locally
pointing along z. This is a gapped phase, where elementary
excitations are spin-flips. For values of � � 1 and � �
�cð�Þ, the ground state starts to encode patterns LR of
correlations that suggest the existence of a non-
perturbative regime (see Fig 3, right panel). However,
when passing from the perturbative regime to the non-
perturbative regime, none of the observables we have
considered shows an anomalous behavior, so that we con-
clude that there is no sharp phase transition between them.
For all the values of � we have considered, at some

�cð�Þ the system undergoes a second order phase transition
to a predominantly Néel ordered state aligned in the x
direction.
The first excited states in these phases are kinks. The gap

to them vanishes as � approaches zero. At � ¼ 0, indeed,
the 1D geometry of the system is completely lost and the
Néel state melts into an exponentially degenerate ground-
state subspace made of all possible arrangements of
N=2jþi states and N=2j�i, where jþi and j�i are the
eigenvectors of �x.
The value of �cð�Þ is always larger than the one of the

ITF transition at �=4. Intuitively, the slower the two body
interaction decays, (smaller �) the more the �x part of the
Hamiltonian becomes frustrated. As a consequence, for
small values of the transverse field (large values of �) the
z polarized state has a lower energy. Indeed, in the (�, �),
�c increases with decreasing �.
The phase diagram is in Fig. 1, where we plot SL=2 of

Eq. (2) as a function of both � and �. For fixed L and �,
SL=2 has a maximum at ��. The extrapolation of �� as a

function of L unveils the location of the critical point
�1c ð�Þ. These points are superimposed in black in Fig. 1.
In the z polarized phase, we observe two striking phe-

nomena. On one side, even if the phase is gapped, we
observe polynomially decaying correlation functions.

Namely, h�L=2
x �L=2þr

x ic/ r�� while h�L=2
z �L=2þr

z ic/r�2�

[36] (similar results were also obtained in Refs. [17,18]).
On the other side we observe violations to the area law for
the entanglement entropy, as the entropy of half chain
increases with the size of the chains. There are two regimes
for the violations depending on the value of �. For � � 1
they are logarithmic so that, by using a tempting analogy
with the case of critical systems, [37–39] we can define an
‘‘effective central charge’’ as

SL=2 / c

6
logL: (5)

The value we determine for c=6 are reported in the upper
panel of Fig. 2. The small dispersion of the curves obtained
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from different system sizes L around a single curve is a
confirmation of the correctness of the scaling form 5.
Interestingly, this effective central charge, in the nonper-
turbative regime, varies very slowly with �. For �> 1 we
still observe a steady growth of the entanglement with the
size of the blocks but its behavior is sublogarithmic. Our
data for � ¼ 3 are not conclusive, they suggest the pres-
ence of sublogarithmic corrections but we cannot exclude
that the entropy would eventually saturate for larger sys-
tems. We leave this as an open issue.

The ES of Eq. (3) can be used to distinguish between the
perturbative and the ‘‘nonperturbative’’ regime in the z

polarized phase. In the perturbative regime, (for � ’ 0),
the ES shows well defined scale separation, proportional to
different powers of the small parameter �. The elements of
the spectrum are dominated by their leading order in �.
In the ITF there is a single element at each order in PT,
whereas in the LITF ES instead, multiple eigenvalues
appear at the same order in PT. They can be identified as
parallel straight lines by plotting the ES in a log-log plot as
a function of �. The slopes of them indicate to which order
in PT the eigenvalue belongs to, as shown in Fig. 3 right
panel for� ¼ 2. There we appreciate both the proliferation
of eigenvalues and the wide range of validity of PT. We
also see that the ES is dominated by eigenvalues appearing
at most at order �4 in PT.
In the same range of �, the ES for � ¼ 0:3 looks very

different. In Fig. 3 right panel, we do not see neither a clear
separations of scales, nor a well-defined power-law behav-
ior of the eigenvalues with respect to � both footprints of
the ‘‘nonperturbative’’ regime [40]. The eigenvalues tend
to cluster in bands (and the respective gaps) that are robust
to changes in size (at least for the range of sizes we have
access to). An unsolved issue is whether they would sur-
vive to the thermodynamic limit.
In both perturbative and nonperturbative regime the

logarithmic violations to the area law coexist with a gapped
ES. This gap is likely to survive in the thermodynamic
limit, so that these corrections are different from those of a
quantum critical point, where the ES gap closes with the
system size [41].
The phase transition.—For the anti-ferromagnetic inter-

action we find a phase transition for every value of �> 0.
This has to be compared with the ferromagnetic case where
there is a lower critical dimension � ¼ 1=2 [22]. A mean
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FIG. 1 (color online). Phase diagram of the LITF from the
entanglement entropy. The half chain entanglement entropy
provides information about the phase diagram of 1 as a function
of � and �. The background colors represent the value SL=2 for a

system of size L ¼ 100. The maximum of it, signals the vicinity
of a phase transition. Extrapolating its position as a function of
L, for L ¼ 20; . . . ; 100, we locate the position of the transition in
the thermodynamic limit �1c . The results are superimposed as
solid black dots connected by a dashed line.
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FIG. 3 (color online). Structure of the ES defined in Eq. (3) as
a function of logð�Þ, for 0 � � � 0:36, deep in the z polarized
phase. Left panel � ¼ 2, the spectrum presents well separated
scales reproducible by the lowest order in PT. Several eigenval-
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FIG. 2 (color online). Violations to the area law. The entangle-
ment entropy for a bipartition increases monotonically with the
system size in the whole z polarized phase. For � � 1 the
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inset). The prefactor in Eq. (5) is extracted by plotting c=6 ¼
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field analysis around the ITF critical point [3,42,43] sug-
gests that the LR interactions are relevant for �< 2þ
2�SR

x driving the system to a different critical point than
the SR case, with �SR

x ¼ 1=8 being the scaling dimension
of the �x operator for the SR ITF. For � ¼ 2:25 the LR is
marginal, while for �> 2:25 it becomes irrelevant and one
should observe the standard SR ITF criticality.

We check the above statements performing a finite-
size scaling analysis of the correlation functions 4,

h�L=2
x ; �L=2þL=5

xc ic / L�2�LR
x . The exponents �LR

x ð�Þ are
presented in the upper panel of Fig. 4, 2�LR

x ð�Þ is different
from 2�SR for all values of �< 2 while between 2 and 3 it
becomes very close to expected SR value 1=4.

By studying the scaling of SL=2 in Eq. (5), we can extract

the value of the central charge of the corresponding CFT
that, for the ITF, is c ¼ 1=2. In the whole range of �
considered, the coefficient we obtain is systematically big-
ger than 1=2. The reason for that is not clear but probably
resides in a mixture of effects: (i) the effects of boundaries
are enhanced by the LR interaction; (ii) the system sizes we
can address are still too small to get rid of the irrelevant
contributions to the leading scaling [44] (indeed our data
agree with a pure logarithmic scaling only for the biggest
lattices L ¼ 70; . . . ; 100); (iii) the LR could induce mar-
ginal operators whose corrections to the scaling are diffi-
cult to control [44]. The corresponding plot is presented in
the lower panel of Fig. 4.

Finally, we have checked the leading power-law scaling
of the �z correlation. In the ITF its leading scaling is
dictated by the thermal exponent �SR

z ¼ 1. The results
for the LITF are presented in the central panel of Fig. 4.
In the SR regime, for �> 2:25, the exponent we extract
from the fit gives an estimate of the thermal exponent off
by around 10% clear symptom of contamination with sub-
leading corrections.

Conclusions and outlook.—In this Letter we have con-
sidered the effects of a LR antiferromagnetic interaction on
the phase diagram of the ITF, in order to both provide a
guide to future trapped ions experiments and study the
increase of complexity induced by the LR interactions.
The resulting phase diagram shows that the frustration
favors the z polarized phase over the x aligned Néel phase.
For all values of �> 0 considered we have located the
phase transition. There we have confirmed that the LR
interaction is relevant for � � 2:25, inducing critical expo-
nents different from the ones of the ITF. We have deter-
mined them for the �x�x and �z�z correlations (the
equivalent of the magnetic and thermal exponents in
the SR case). They vary continuously as a function of �
in the range 0<�< 2:25. The scaling of the entanglement
entropy in the SR regime is used to provide an estimate
for the central charge c of the underlying CFT, that turns
out to be systematically larger than the expected value 1=2.
We miss a complete understanding of this result (that
however could be a manifestation of the fact that the

systems we can address are still too small to see the
expected asymptotic scaling) and further studies should
be devoted to clarify it.
The complexity of the ground state induced by the LR

part of the Hamiltonian is not significantly higher than the
one of their SR equivalent. There are violations to the area
law for the entanglement entropy, whose strength depends
on �. The strongest violations are found for � � 2 and
are logarithmic in the system size. These violations appear
only in the SR dominated z polarized, gapped phase. They
seem to be always accompanied by a finite entanglement
gap and in some cases by the presence of bands in the ES.
Further studies should be devoted to check the persistence
of the corrections for dipolar interactions in the thermody-
namic limit. In the x aligned Néel phase, dominated by the
LR part of the Hamiltonian, there are no violations to the
area law.
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