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We propose and analyze a physical system that naturally admits two-dimensional topological nearly flat

bands. Our approach utilizes an array of three-level dipoles (effective S ¼ 1 spins) driven by inhomoge-

neous electromagnetic fields. The dipolar interactions produce arbitrary uniform background gauge fields

for an effective collection of conserved hard-core bosons, namely, the dressed spin flips. These gauge

fields result in topological band structures, whose band gap can be larger than the corresponding

bandwidth. Exact diagonalization of the full interacting Hamiltonian at half-filling reveals the existence

of superfluid, crystalline, and supersolid phases. An experimental realization using either ultracold polar

molecules or spins in the solid state is considered.
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Single-particle flat bands, where kinetic energy is
quenched relative to the scale of interactions, are being
actively explored in the quest for novel strongly correlated
phases of matter [1–8]. Prompted by the analogy to Landau
levels, recent efforts have focused on topological flat bands
—lattice models in which the band structure also harbors a
nontrivial Chern invariant. Seminal recent work has
highlighted that certain classes of highly engineered two-
dimensional tight binding models can indeed exhibit topo-
logical nearly flat bands [9–14]. However, the identification
of a physical system whose microscopics naturally admit
topological flat bands remains an outstanding challenge.

In this Letter, we demonstrate the emergence of syn-
thetic gauge fields for an ensemble of interacting hard-core
bosons—the effective spin flips of pinned, three-level
dipoles in a two-dimensional lattice. Underlying these
gauge fields are two key ingredients: spatially varying,
elliptically polarized external (microwave or optical) fields
break time-reversal symmetry, while anisotropic dipolar
interactions induce orientation-dependent phases onto the
hopping hard-core bosons. The combination of these
effects naturally produces nontrivial Chern numbers in
the band structure and, when tuned appropriately, results
in the emergence of flat bands due to hopping interference.
While we observe a variety of nontopological correlated
many-body states here (ranging from conventional crystals
to supersolids), interacting particles living in such a flat-
band-kinetic environment are also leading candidates for
the realization of fractional Chern insulators [1–8]. Our
proposal describes a natural framework in which ultracold
molecules may be used to probe the exotic features of such
interacting topological insulators.

Let us consider a square lattice composed of fixed, three-
state magnetic or electric dipoles placed in a static external
field. Such an arrangement naturally arises in experimental

systems ranging from ultracold polar molecules [15–21]
and Rydberg atoms [22–24] to solid-state spins [25,26] and
magnetic atoms [27]. As shown in Fig. 1, the dipoles
occupy the fX; Yg plane and couple via dipole-dipole inter-
actions,

Hdd ¼ 1

2

X
i�j

�

R3
ij

½di � dj � 3ðdi � R̂ijÞðdj � R̂ijÞ�; (1)

where � is 1=4��0 for electric dipoles or �0=4� for mag-
netic dipoles, and Rij connects the dipoles di and dj. The

three states of each dipole, which we label as j0i, j � 1i, are
eigenvectors of the ẑ component of (rotational or spin)
angular momentum. We assume that the j � 1i states are
degenerate while the j0i state is energetically separated
from them [Fig. 2(a)].
Each three-level dipole is driven by electromagnetic

fields of Rabi frequency �þ (right-circularly polarized),
�� (left-circularly polarized), and detuning � as shown

FIG. 1 (color online). Schematic representation of a 2D dipolar
droplet. The grey droplet represents a 2D array of interacting
tilted dipoles. The dipoles are tilted by a static field in the ẑ
direction, oriented at�0,�0 relative to the lattice basis fX; Y; Zg.
Rij is a vector connecting dipoles in the XY plane.
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schematically in Fig. 2(a). With j�þj, j��j � �, the
approximate eigenstates (dressed states) are j0i, jBi ¼
�ðj � 1i þ �j1iÞ, and jDi ¼ ��ð���j � 1i þ j1iÞ, where
� ¼ �þ= ~�, �� ¼ ��= ~�, and ~� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij��j2 þ j�þj2

p
.

The energies of these dressed states are E0 ¼ � ~�2=�,

EB ¼ �þ ~�2=�, and ED ¼ �, respectively. We let d
represent the typical size of the dipole moment and R0 be
the nearest-neighbor lattice spacing; by ensuring that

�d2=R3
0 � ~�2=� and so long as we initially avoid pop-

ulating jDi, the system remains within the subspace locally
spanned by j0i and jBi (note that one could also choose to
work in the subspace spanned by j0i and jDi).

Thus, it is natural to view jBi as representing an effective
hard-core bosonic excitation (spin flip), while j0i repre-
sents the absence of such an excitation. Recasting this

system in terms of operators ayi ¼ jBih0ji (ni ¼ ayi ai)
yields a 2D model of conserved hard-core lattice bosons,

HB ¼ �X
ij

tija
y
i aj þ

1

2

X
i�j

Vijninj; (2)

wherewe define the hopping tij ¼ �hBi0jjHddj0iBji, the on-
site potential tii¼

P
j�iðh0i0jjHddj0i0ji�hBi0jjHddjBi0jiÞ,

and the interaction Vij¼hBiBjjHddjBiBjiþh0i0jjHddj0i0ji�
hBi0jjHddjBi0ji�h0iBjjHddj0iBji. The conservation of

total boson number, Ni ¼ P
ia

y
i ai, arises from the condi-

tion �d2=R3
0 � �, which ensures that particle-number

nonconserving terms of Hdd are energetically disallowed.
The functional form of the effective hard-core bosonic

Hamiltonian Eq. (2) arises for any system of pinned,

three-level dipoles. The parameters in HB are given by
(� ¼ 1, i � j):

tij ¼ d201
R3

f�y
i ðq0 þ Re½q2��x þ Im½q2��yÞ�jg;

tii ¼ �X
j�i

2
q0
R3

½d0dBi � ðd0Þ2�;

Vij ¼ 2
q0
R3

½dBi dBj � d0dBi � d0dBj þ ðd0Þ2�;

(3)

where d0 (dB) is the permanent ẑ-dipole moment of the j0i
(jBi) state, d01 is the transition dipole moment from j1i to
j0i [28], �i ¼ �ið1; �iÞT is the normalized drive-spinor
on site i, q0 ¼ 1

2 ½1� 3cos2ð���0Þsin2ð�0Þ�, q2 ¼
� 3

2 ½cosð���0Þ cos�0 � i sinð���0Þ�2, ~� are the

Pauli matrices, and (R, �) is the separation Rij in polar

coordinates (Fig. 1). We have suppressed the explicit ij
dependence of R,�, q0, and q2. While the form of dBi , and
hence of interactions, depends on the underlying imple-
mentation, the single-particle band structures that can be
achieved via driving are independent of such details [29].
Let us first explore these topological single-particle

bands and illustrate the interplay between the driven break-
ing of time reversal and the anisotropic dipolar interaction.
As a simple example, we demonstrate how to achieve a
synthetic background gauge field with uniform flux �=N
per plaquette on a square lattice (assuming only nearest-
neighbor hops). We choose the ‘‘magic’’ electric field tilt,

ð�0;�0Þ ¼ ½sin�1ð ffiffiffiffiffiffiffiffi
2=3

p Þ; �=4�, where q0 ¼ 0 along X̂

and Ŷ. This choice allows us to isolate the terms of Hdd

that harbor intrinsic phases, namely, those associated

with dþi dþj and d�i d�j , where d� ¼ �ðdx � idyÞ=
ffiffiffi
2

p
[18,28]. Moreover, it simplifies the form of nearest-
neighbor hopping to

tX̂ij ¼
d201
R3
0

�y
i

�
1

2
�x �

ffiffiffi
3

p
2

�y

�
�j;

tŶij ¼
d201
R3
0

�y
i

�
1

2
�x þ

ffiffiffi
3

p
2

�y

�
�j:

(4)

The microscopic breaking of time reversal arises from the
asymmetry between left- and right-circularly polarized
radiation and is captured by the ratio � ¼ ��=�þ.
While each Rabi frequency is characterized by both an
amplitude (intensity) and a phase, initially, we will con-
sider only varying the amplitude of�; phase variations will
be considered in more detail in the discussion of many-
body states. Physically, it is � which defines each hard-
core boson jBi, by setting the relative admixture between
the j1i and j � 1i states. Keeping � real, let us now
consider varying the intensities of the drive fields along
the � ¼ �=4 direction in a periodic fashion.
For each plaquette, we define the Wilson loop, WðpÞ ¼Q
@ptij, which is identical along columns indexed by ‘

[Fig. 2(b)]. The flux in a plaquette is then the phase of

FIG. 2 (color online). (a) Depicts the on-site level structure
and the two-photon driving scheme. These levels could, for
example, be adiabatically connected to the J ¼ 1 manifold of
a rigid rotor as one turns on a dc electric field [see Eq. (6)]. The
resonance frequency of the dressing lasers is detuned by �,
while their Rabi frequencies are ��ðrÞ and �þðrÞ. We consider
j��j � � to operate in the far-detuned limit. In the case of
polar molecules, 	 is the electric-field induced splitting within
the J ¼ 1 manifold, which we require to be larger than the
typical dipolar interaction strength. (b) Square lattice with a
single tilted dipole per vertex. We index columns of the lattice
by ‘ and plaquettes by p‘. For a particle traversing the edge of a
single plaquette, there are two contributions t‘ and t0‘ to Wðp‘Þ;
each contribution occurs twice as represented by the red and blue
colored arrows. A simple periodic gradient of � enables uniform
�=N flux per plaquette.
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this Wilson loop, �‘ ¼ arg½Wðp‘Þ� ¼ arg½t2‘t02‘ �, where t‘
and t0‘ are the hops depicted in Fig. 2(b). Taking 
‘ ¼
argðt‘Þ and noting that 
0‘ ¼ argðt0‘Þ ¼ �
‘þ1 yields the

phase of the Wilson loop as �‘ ¼ 2
‘ � 2
‘þ1. To
achieve a uniform �=N flux per plaquette, we can take

‘þ1 ¼ �� ‘ �

2N , where � 2 R is a constant to be speci-

fied. From the definition of 
‘, one finds a simple recursion
relation for �,

�‘þ1

�‘

¼ sinð�3 � �þ ‘ �
2NÞ

sinð�3 þ �� ‘ �
2NÞ

; (5)

with maximum periodicity 4N [30]. Starting from any
initial �1, Eq. (5) yields a recursively generated drive
pattern which achieves the desired uniform �=N back-
ground gauge field.

While the uniform flux per plaquette is reminiscent of
the square lattice Hofstadter problem [31], we emphasize
that the physics of these driven dipoles is significantly
richer, owing to the additional modulation of tij. The

background flux field arises, in part, from the natural
phases associated with the dipolar interaction. This ensures
that (as in Ref. [32]) the number of flux quanta per pla-
quette is not limited by the magnitude of laser intensities,
contrasting with the majority of previous synthetic gauge
field proposals, where the scaling to high artificial fluxes is
extremely difficult [33–37].

To illustrate the symmetry breaking required for the
generation of gapped Chern bands, we now turn to a
detailed study of HB restricted to a two-site unit cell
(remaining at the ‘‘magic’’ tilt), as depicted in Fig. 3(a).
This restriction has the virtue of being analytically trac-
table and allows us to identify the antiunitary symmetries
associated with the Dirac points [38,39]. Let us consider
� ¼ �1, �2 on the two sites of the unit cell and include all

terms up to next-next-nearest neighbor. The topology of
the bands depends on the relative ratio of �1 and �2.
For �1 2 R, the phase diagram in Fig. 3(b) illustrates
the Chern invariant of the bottom band as a function
of the complex �2 plane. There exist two circles of
gapless (Dirac) points protected by distinct antiunitary
symmetries.
Implementation.—An experimental realization of our

proposal can be envisioned with either electric (e.g., polar
molecules) or magnetic (e.g., solid-state spins) dipoles. As
previously mentioned, the form of dBi depends on this
choice, since the permanent dipole moment of the j � 1i
states have either the same or opposite signs. We empha-
size that the long intrinsic lifetimes of such systems make
them ideal for the consideration of driven, nonequilibrium
phenomena [40,41].
To be specific, we now focus on diatomic polar mole-

cules (trapped in a deep optical lattice) in their electronic
and vibrational ground state. We utilize microwave fields
to dress the molecules and partially polarize them with an
applied dc electric field along ẑ (Fig. 1); ignoring elec-
tronic and nuclear spins, this yields a single-molecule
Hamiltonian,

Hm ¼ BJ2 � dzEþHD; (6)

where B is the rotational constant, J is the rotational
angular momentum operator, dz is the ẑ component of
the dipole operator, E is the magnitude of the applied dc
field, and HD characterizes the dressing of the J ¼ 1 rota-
tional states depicted in Fig. 2(a) [18,40].
In the absence of applied fields, each molecule possesses

rigid rotor eigenstates jJ;Mi. The applied electric field E
mixes eigenstates with the same M, splitting the degener-
acy within each J manifold and inducing a finite dipole
moment for each perturbed rotational state. We choose
from among these states to form the effective three-level
dipole; an example of one possibility for j0i, j � 1i is
shown in Fig. 2(a). Since these j � 1i states have an
identical induced dipole moment d1, one finds that dBi ¼
d1, and hence,

Vij ¼ 2
q0
R3

ðd0 � d1Þ2: (7)

The relative strength of the interaction Vij=tij is thus set by

ðd0 � d1Þ2=d201; this is a highly tunable parameter and can

easily reach �100 for certain choices of rotational states
and dc electric field strengths [18].
The main challenge in an experimental realization of our

proposal lies in the spatial modulation of the drive fields at
lattice scale. For spins in the solid-state and on-chip polar
molecule experiments, one might envision using near-field
techniques. A more straightforward approach, suitable
for molecules, is to utilize pairs of optical Raman beams
[42] (see Supplemental Material for details [30]). For
example, the so-called lin ? lin configuration [43]

FIG. 3 (color online). (a) Schematic representation of the two-
site unit cell lattice with � ¼ �1, �2. The dotted box outlines a
single unit cell. There is a flux �, �� which alternates in
neighboring square plaquettes. The direct lattice vectors g1 and
g2 are depicted as purple arrows. While all hops are present with
amplitude decaying as 1=R3, only nearest-neighbor (solid) and
next-nearest-neighbor (dashed) hops are shown. (b) The topol-
ogy of bulk bands as a function of complex �2 for �1 2 R. The
Chern number is c ¼ 1

4�

R
dkxdkyð@kx d̂	 @ky d̂Þ � d̂, where

HðkÞ ¼ ~dðkÞ � ~�þ fðkÞ.
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automatically ensures that ~� and� are identical on all sites
and moreover, generically produces gapped topological
band structures.

Many-body phases.—To illustrate the power of the
present approach, we briefly explore two examples of
correlated ground-state phases which arise in the
Hamiltonian Eq. (2). As HB conserves boson number N,
we may consider its many-body physics at finite filling
fractions � (particle number per unit cell). Let us work with
a two-site unit cell and truncate the dipolar interactions at
next-next-nearest neighbor order. Bosons residing in a
strongly dispersing band structure generically form super-
fluids in order to minimize their kinetic energy. Interaction
dominated phases arise when the single-particle bands
disperse less than the scale of interactions. Numerical
optimization of the flatness ratio (band gap to lowest
bandwidth) over the six-dimensional parameter space of
microwave driving and tilt angle reveals approximately flat
Chern bands in several regions of phase space. The flatness
of these bands [Fig. 4(a)] derives from interference

between the hopping in different directions and, micro-
scopically, owes to an interplay between the natural an-
isotropy associated with dipolar interactions and the spatial
variation of the drive fields.
As a first example, we consider the band structure

depicted in Fig. 4(a), where the lower and upper band carry
Chern index, c ¼ �1 (parameters in caption). Exact diag-
onalization at filling fraction � ¼ 1=2 and relative interac-
tion strength ðd0 � d1Þ2=d201 
 6 reveals a knight’s move

solid (KMS) phase with a fourfold degenerate, gapped,
ground state. The real-space structure factor SðR; 0Þ ¼
hnðRÞnð0Þi (at total number of sites, Ns ¼ 32) in Fig. 4(b)
illustrates the knight’s move relationship of the bosons in
the ground state. Twisting the boundary condition of the
KMS in the ĝ1, ĝ2 directions [Fig. 4(b)] does not signifi-
cantly affect the ground-state energy, as expected of an
insulator [30].
Many other commensurate phases arise as we tune the

driving fields to other regions of phase space. Figure 4(d)

shows a phase diagram containing both superfluid (SF) and

striped supersolid (SSS) phases. We can characterize the

SSS phase arising at 
1 ¼ 
2 ¼ 0:1 as follows: First,

diagonalization reveals the existence of three degenerate

ground states in the sectors: k2 ¼ 0, k1 ¼ 0, 2�=3, 4�=3.
Consistent with striped ordering, the structure factor

shows density stripes in the ĝ2 direction [Fig. 4(c)].

However, each of these stripes has an incommensurate

boson number, suggesting delocalization along the stripes.

To wit, for Ns ¼ 24, the 6 hard-core bosons are distributed
evenly along two stripes, each containing four sites. Strong

phase coherence along the stripes shows up in the sensi-

tivity to twists in the ĝ2 direction, while transverse twists

produce essentially no dispersion, as shown in Figs. 4(e)

and 4(f).
Conclusion.—Our proposal opens the door to a number

of intriguing directions. In particular, the adiabatic prepa-
ration and detection of single-excitation states may provide
an elegant approach to probing chiral dynamics, edge
modes, and the Chern index [42,44,45]. More generally,
dynamical preparation, manipulation and detection of
many-body states in such driven topological systems
remains an exciting open question [46]. Finally, the large
available parameter space holds the promise of more exotic
phases, such as fractional Chern insulators [42]. Realizing
such phases in an effective spin system [47,48] may
provide a deeper understanding of the stability of such
states in the context of generalized long-range dipolar
interactions.
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FIG. 4 (color online). Phase transitions in topological flat
bands of 2D driven dipoles. (a) Band structure for ð�0;�0Þ ¼
ð0:46; 0:42Þ, �1 ¼ 3:6e2:69i, and �2 ¼ 5:8e5:63i. We have verified
that the Chern number does not change upon adding in dipolar
interactions up to order 1=27R0. Significantly flatter band struc-
tures with a flatness ratio >10 can be obtained for slightly
generalized configurations involving a tripod level structure
and optical superlattice [42]. (b) Structure factor SðR; 0Þ ¼
hnðRÞnð0Þi for filling � ¼ 1=2 in KMS [30] and (c) SSS regime;
size of circles indicates weight. (d) Spectral gap density plot as a
function of varying microwave drive for parameters: ð�0;�0Þ ¼
ð0:66; �=4Þ, �1 ¼ �2:82ei
1 , �2¼�4:84e�i
2 , and ðd0�d1Þ2=
d201
2:8. The transition from the SF, which has a unique finite-

size ground state, to the degenerate SSS shows as a collapse of
this gap. (e) Spectral flow in the ground state momentum sector
of the SSS under twisting of the boson boundary condition in the
ĝ1 and (f) ĝ2 directions. For the Ns ¼ 24 lattice with 6 bosons,
momentum sectors return to themselves after 2� in 
1 and after
4� in 
2.
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