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Theories of phase change and self-assembly often invoke the idea of a ‘‘quasiequilibrium,’’ a regime in

which the nonequilibrium association of building blocks results nonetheless in a structure whose

properties are determined solely by an underlying free energy landscape. Here we study a prototypical

example of multicomponent self-assembly, a one-dimensional fiber grown from red and blue blocks. We

find that if the equilibrium structure possesses compositional correlations different from those character-

istic of random mixing, then it cannot be generated without error at any finite growth rate: there is no

quasiequilibrium regime. However, by exploiting dynamic scaling, structures characteristic of equilibrium

at one point in phase space can be generated, without error, arbitrarily far from equilibrium. Our results,

supported by mean-field theory in higher dimensions, thus suggest a ‘‘nonperturbative’’ strategy for

multicomponent self-assembly in which the target structure is, by design, not the equilibrium one.
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Many theories of phase change and self-assembly place
at their heart the idea that dynamical trajectories follow
low-lying paths on the free energy landscape connecting
reactants and products [1–11]. This idea underpins rate
equation theories [1,3–5], classical nucleation theory [1,2]
and density functional theory [7–11]—which assume that a
structure’s morphology is determined by minima or low-
lying paths on the underlying free energy landscape–and the
conjecture of Stranski and Totomanow [12], which states
that a system, confronted by a set of free energy barriers, will
evolve by crossing the lowest of them. These formal state-
ments reflect the intuition that one can generate structures
characteristic of equilibrium using a sufficiently ‘‘mild’’
nonequilibrium protocol. Many one-component systems
indeed assemble in quasiequilibrium [10,11,13–15] if they
are not deeply supercooled [16,17] or plagued by slow
particle dynamics [18]. However, a substantial literature
suggests that multicomponent self-assembly is susceptible
to kinetic factors even under conditions of weak driving
[19–26]. For instance, the Stranski-Totomanow assumption
breaks down in a particular case of simulated binary colloid
nucleation, where sluggish interspecies mixing prevents
nuclei from establishing compositional equilibrium [27,28].
Also, binary crystals have been observed in simulation and
experiment to grow out of compositional equilibrium, even
under conditions mild enough to produce morphologically
ordered structures [24–26]. To describe such assembly theo-
retically, one must account for dynamical processes that
drive a system away from low-lying paths on the free energy
landscape [19–23,28–31]. On a practical level, one can ask
under what conditions can precisely defined multicompo-
nent structures be self-assembled, if evolution even near a
phase boundary leads to a structure not characteristic of the
equilibrium one?

Here we study this question within a prototypical ex-
ample of multicomponent self-assembly. We apply simu-
lation and quantitatively accurate analytic theory to the
fluctuating growth of a model lattice-based fiber built from
red and blue blocks. We show that when compositional
correlations of the equilibrium structure are not equal to
those of the randomly mixed material incident on the fiber,
the former cannot be generated at a finite rate of growth.
Moreover, structures that assemble even close to the phase
boundary can be very different from equilibrium ones. This
absence of a quasiequilibrium regime occurs despite the
fact that fibers near the phase boundary grow in a ‘‘quasir-
eversible’’ manner, displaying many unbinding events.
However, by exploiting dynamic scaling connecting equi-
librium and nonequilibrium parameter manifolds, defined
structures can be generated without error arbitrarily far
from equilibrium. The failure of a widely made assumption
for perhaps the simplest example of compositionally inho-
mogeneous self-assembly confirms the need for the devel-
opment of dynamical theories [23,26,30,32–35] in order to
describe the self-assembly of multicomponent structures,
and challenges the idea that the equilibrium structure is the
natural target for multicomponent self-assembly.
Model.—We consider a one-dimensional stochastic

growth process in which a fiber is built from red and blue
blocks [Fig. 1(a)].We add blocks to the right-hand end of the
fiber with rate c (concentration). Added blocks are blue with
probability pblue, and red otherwise. We allow the rightmost
block to detach from the fiberwith rate e���i , which depends
on the nature of the rightmost bond of the fiber. Nearest-
neighboring blocks of the same color interact with energy
��i ¼ ��s, while the red-blue interaction is ��d (we set
� ¼ 1 throughout). We implemented this stochastic process
in simulations using a kinetic Monte Carlo procedure
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[36,37]: we removed the terminal block with probability
premove ¼ 1=ð1þ ce��iÞ, where i ¼ s or d as appropriate,
and otherwise added a block to the fiber end. This idealized
fluctuating protocol captures the key kinetic constraint
imposed upon the physical process of 3D assembly: material
can be removed only from the interface between a structure
and its environment [26]. By considering a lattice model
in which complications of morphology and the possibility
of internal block rearrangements are suppressed, we can
explore directly how this constraint affects pattern genera-
tion. Imposing this constraint results immediately in impor-
tant qualitative behaviors seen also in 3D systems; we shall
show how analysis of these behaviors suggests an unconven-
tional and potentially powerful strategy for self-assembly.

The ‘‘equilibrium’’ we consider is the one often imag-
ined in theories of self-assembly, corresponding to mini-
mization of the free energy of a structure of fixed size
[10,11,13,15]. Such an equilibrium is achieved by our
dynamical protocol in the limit of a large number of
binding and unbinding events per site [38]: a key question
is how the structure generated at a finite rate of growth
compares to the equilibrium one. The energetics of a fiber
of fixed size is that of the 1D Ising model [39,40], with

Hamiltonian H ¼ �J
P

iSiSiþ1 � h
P

iSi. Here the spin
variable Si ¼ �1 describes a blue (Si ¼ 1) or red (Si ¼
�1) block; the coupling J ¼ ð�s � �dÞ=2 is the penalty for
domain wall (red-blue bond) creation; and the magnetic
field h ¼ � lnð1=pblue � 1Þ=2 describes the bias for blue
blocks over red ones. Here we add red and blue blocks with
equal likelihood, i.e., pblue ¼ 1=2, equivalent to h ¼ 0.
In this case the equilibrium structure of a fiber consists
of equal proportions of red and blue blocks arranged into
domains whose lengths ‘ occur with probability �0ð‘Þ ¼
ð�0 � 1Þ�1 exp½‘ lnð1� ��1

0 Þ�. Here, �0 ¼ 1þ expð2�JÞ
is the mean domain length in equilibrium.
Results.—We carried out dynamic simulations for the

choice �d ¼ 1 and a range of values of �s > �d (for which
�0 > 2). For each set of energetic parameters we consid-
ered a range of concentrations c. When c < c0 ¼
2=ðe��s þ e��dÞ the fiber does not grow. When c ¼ c0 the
drift velocity of the fiber, averaged over distances greater
than a typical domain length, is exactly zero. The fiber
therefore ‘‘grows’’ only by diffusion of its rightmost end.
When c > c0 the fiber grows with nonzero drift velocity.
We therefore consider the concentration c0 to define the
‘‘phase boundary’’ between nonassembly and assembly.
We stopped dynamic simulations when a fiber of length
L ¼ 2:5� 104 blocks was generated. We performed 104

simulations for each concentration considered, except at
the phase boundary, where the diffusive growth of a fiber
was slow; there, we generated about 200 fibers for each set
of conditions. For each ensemble of fibers we measured
the probability distribution of domain lengths �ð‘Þ ¼
nð‘Þ=PL

‘¼1 nð‘Þ, where nð‘Þ is the number of occurrences

of domain length ‘ across all simulations at given thermo-
dynamic conditions. These distributions were always
exponential (Fig. S1 in the Supplemental Material [41])
with a mean � depending on all three parameters c, �s and
�d. This mean is shown in Fig. 1(b) for two choices of �s.
At the phase boundary the equilibrium structure is gener-
ated. For all points past the phase boundary, the dynamic
domain length � is less than the equilibrium one �0, despite
the fact that fiber growth close to the phase boundary is
highly fluctional, exhibiting many unbinding events
[Fig. 1(b), space-versus-time snapshot at right]. Moreover,
fiber structures are exquisitely sensitive to preparation con-
ditions, and change continuously with supersaturation.
Analytic theory reveals that this sensitivity is an inevi-

table consequence of the different compositional statistics
of the equilibrium structure and unassembled material.
Consider defect variables �i � SiSiþ1, where �i ¼ 1
describes a bulk (same-color) bond and �i ¼ �1 is a
defect (unlike-color) one. Let � � ½ð�i þ 1Þ=2� be the
likelihood that a given bond is a bulk one, where the
average ½�� is taken over many realizations of the dynam-
ics. Enumeration of basic microscopic processes (see the
Supplemental Material [41]) implies a drift velocity for
bulk domains

FIG. 1 (color online). Fiber structures depend sensitively upon
preparation conditions. (a) Schematic of fiber energetics and
growth rates. (b) Domain lengths � of dynamically generated
fibers of given energy scales �s (simulations: solid lines, theory:
dashed lines) are less than the corresponding equilibrium domain
lengths �0 (horizontal dashed lines) for all points past the phase
boundary c ¼ c0 (vertical dashed lines). This breakdown of the
quasiequilibrium assumption reflects the conflict between com-
positional correlations of unassembled material and the equilib-
rium structure, and occurs despite the fact that fibers close to
the phase boundary grow in a quasireversible way. (c) Simulation
data can be collapsed onto a master curve, summarizing the conti-
nuous variationof the scaleddomain lengthgð�Þ��ð��2Þ=ð��1Þ
with concentration c.
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vbulk ¼ c=2��e���s ; (1)

and a drift velocity for the fiber

vfiber ¼ c��e���s � ð1��Þe���d : (2)

At the phase boundary, where vbulk ¼ vfiber ¼ 0,

Eqs. (1) and (2) give the equilibrium bulk fraction �0 ¼
1=ð1þ e�ð�d��sÞÞ, and the equilibrium concentration c0 ¼
2=ðe��d þ e��sÞ. �0 and c0 are given by horizontal and
vertical dotted lines on Fig. 1(b). Fiber dynamics can be
solved by requiring vbulk=vfiber ¼ �, yielding

� ¼ c=2��e���s

c��e���s � ð1��Þe���d
: (3)

This equation is straightforwardly solved (see Eq. S1 in
the Supplemental Material [41]) for the domain length � ¼
1=ð1��Þ, and we plot this solution as grey dashed lines in
Fig. 1(b). The agreement with simulation is good, confirm-
ing the sensitivity of fiber structure to method of prepara-
tion. Moreover, the structure of Eq. (3) reveals the origin of
this sensitivity. Its large-c limit returns the domain length
characteristic of random mixing, �1 ¼ 2, which is in
general unequal to the equilibrium domain length �0.
At the phase boundary, the balance of c-dependent and
-independent terms in Eq. (3) is such that bulk domains are
generated at a rate characteristic of equilibrium. For finite
supersaturation, however, the statistics of the fiber begins
to reflect the statistics of random mixing: Eq. (3) can be
expanded in small deviations �c � c� c0 from the phase
boundary to yield

�� �0 � ��0

c0

ð�0 � 2Þð�0 � 1Þ
�0ð�0 � 2Þ þ 2

�c: (4)

Thus fiber structure is a continuous function of concentra-
tion, and the dynamic correlation length is less than the
equilibrium one for any concentration c > c0. Equivalently,
structures generated at finite growth rate always sit above
the minimum of the free energy landscape (Fig. S2 in the
Supplemental Material [41]).

Comparison of simulation and analytic theory thus
reveals that a fiber’s dynamically generated structure can
be understood by considering only the relative net rates of
bulk domain generation and fiber elongation. Although the
relaxation time for a given site is governed by the number
of times the fiber end diffuses back and forth across it, with
sites far from the fiber end being ‘‘locked in’’ [26], the
structures generated by our fluctuating simulation protocol
are explained solely by the competition between the com-
positional statistics of equilibrium and random mixing.
The departure from quasiequilibrium follows from this
competition enacted at finite drift velocity, where random-
ness associated with unassembled material trumps corre-
lation induced by block binding energies. The rate of this
departure, given to lowest order by Eq. (4), has practical
consequences for the design of fiber patterns. For target

structures mimicking conventional binary crystals, having
�0 � 1, the conventional ‘‘perturbative’’ scheme of grow-
ing some small distance �c from the phase boundary leads
to a structure with few errors, whose compositional corre-
lations are numerically close to the target one (Fig. S3 in
the Supplemental Material [41]). We note that simulated
3D binary crystals can likewise be grown close to composi-
tional equilibrium [26]. However, when the desired target
possesses long range compositional correlations, growth
even close to the phase boundary results in many errors
(Fig. S4 in the Supplemental Material [41]). Similar pre-
dominance of kinetics is seen in the growth of segregated
binary assemblies [24,25].
The perturbative method of self-assembly thus becomes

increasingly unattractive as the compositional correlations
of the target structure become increasingly complex. Here
we propose an alternative nonperturbative approach. Our
model’s dynamics, Eq. (3), can be cast in the scaling form

c=c0 ¼ gð�0Þ=gð�Þ; (5)

where gð�Þ � �ð�� 2Þ=ð�� 1Þ is a scaled correlation
length. This expression reveals that the results of dynamic
simulations can be collapsed onto a straight line connect-
ing a manifold of nonequilibrium conditions with an equi-
librium point at (1, 1). We verified this collapse for a range
of simulations carried out at 40 different phase points
[Fig. 1(c)] whose values of �s ranged from 2 to 6. The
nature of the master curve demonstrates that no fiber
having � ¼ �0 can be generated anywhere past the phase
boundary c ¼ c0, and emphasizes the sensitivity of struc-
ture � to preparation condition c. But it also describes a
useful connection between patterns in and out of equilib-
rium. It can be rearranged to read

c ¼ 2ð�� 1Þ
�ð�� 2Þ ðe

���d � e���sÞ; (6)

revealing that structures of identical � can be generated
on a manifold of parameters c, �s, and �d, regardless of
distance to the phase boundary. We illustrate this manifold
in Fig. 2. � is constant along the displayed contour lines.
Simulations verify this prediction (Fig. S5 in the Supple-
mental Material [41]): structures generated dynamically
at the circles on each contour line are indistinguishable.
However, fiber generation changes from being purely
diffusive (and very slow) at the phase boundary, to being
nearly irreversible (and very fast) far from it, illustrated
by the space-time trajectories shown (see also Fig. S5 in
the Supplemental Material [41]). Moving rightwards along
contours, the generated structures lie increasingly far from
the equilibrium one for the corresponding energetic para-
meters (Fig. 2, inset); nonetheless, structures characteristic
of equilibrium at a particular point on the phase boundary
can be generated by a continuum of nonequilibrium pro-
tocols away from it. In this sense, equilibrium structures
can be grown, error-free, arbitrarily far from equilibrium.
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Conclusions.—Compositionally inhomogeneous struc-
tures are found abundantly in biology [42,43], and are
increasingly the target of designed self-assembly processes
[25,44–48]. However, it is increasingly clear that in order
to ensure the self-assembly of a desired multicomponent
structure, specification of a free energy surface [49,50] is
in general not sufficient [19–27]. Instead, explicit account-
ing of how microscopic dynamics [51] select assembly
pathways [52,53] is required. Here we have shown how
to exploit directly the relationships between the rates of
elementary microscopic processes in order to generate a
structure of defined composition, regardless of whether
that composition is the underlying equilibrium one.
Although the model we have studied is highly simplified,
lacking, e.g., the cooperativity characteristic of crystals in
higher dimensions, it shares two important qualitative
features with real systems. First, a mismatch in composi-
tional statistics between randomly mixed particles and
those of the desired structure means that any attempt to
assemble the equilibrium structure using a nonequilibrium
protocol incurs errors. When this mismatch is small, errors
are few (Fig. S3 in Ref. [41] and Ref. [26]); when this
mismatch is large, errors are numerous (Fig. 1, Fig. S4 in
Ref. [41], and Refs. [24,25]). Second, the dynamic scaling
exhibited by our model, which permits the precise far-
from-equilibrium assembly strategy we have described, is
strikingly reminiscent of data collapse seen in segregated
binary structure growth. There, an effective compositional
order parameter scales with effective crystal growth veloc-
ity [25] (in a regime in which crystals are morphologically
ordered). Mean-field theory (see the Supplemental
Material [41]) indicates that these similarities are not
accidental, but exist because the dynamic behaviors that
allow the far-from-equilibrium assembly strategy in the
fiber model survive in higher-dimensional systems

possessing thermodynamic phase transitions at finite tem-
perature. Our results therefore suggest the possibility of
doing with real systems as as we have done within our
model: design compositionally ordered structures in equi-
librium, and assemble them far from it.
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