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We report two-dimensional discrete dislocation dynamics simulations of combined dislocation glide

and climb leading to ‘‘power-law’’ creep in a model aluminum crystal. The approach fully accounts for

matter transport due to vacancy diffusion and its coupling with dislocation motion. The existence of

quasiequilibrium or jammed states under the applied creep stresses enables observations of diffusion and

climb over time scales relevant to power-law creep. The predictions for the creep rates and stress

exponents fall within experimental ranges, indicating that the underlying physics is well captured.
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Dislocations are the main carriers of deformation in
crystal plasticity [1]. The glide motion of these line defects
dominates at low homologous temperatures, whereas their
climb, a nonconservative motion mediated by the absorp-
tion or emission of lattice vacancies, becomes important in
high-temperature deformation (creep) [2]. It is generally
believed that the creep strain is mainly produced by dis-
location glide at a rate set by dislocation climb [2,3].
However, a detailed analysis of the phenomenon is lacking
due to the complexity of incorporating both vacancies and
dislocations in a single computational framework. As a
thermally activated process, the diffusion of vacancies
occurs over time scales that are much longer than can be
accessed by molecular dynamics [4,5], and available dis-
location dynamics formulations [6–9] do not account for
the nonlinear vacancy-dislocation interactions inherent to
climb [3,10]. Only recently have dislocation glide and
climb been simultaneously considered in the simulation
of prismatic loop coarsening [11]. In this Letter, we extend
this approach to simulate power-law creep. The approach
fully utilizes quasiequilibrium or ‘‘jammed’’ dislocation
states under the low creep stresses to effectively bridge
the fine time scales of dislocation glide with the coarse
time scales of diffusion-controlled climb in a single simu-
lation. It also employs a variational principle to derive
boundary conditions for the coupled problem and a
dislocation climb model with atomistic fidelity [3].

When the climb motion of noninteracting, pinned edge
dislocation segments normal to the slip plane is assumed to
proceed at a velocity proportional to the applied stress (�)
[12,13], the steady-state creep rate exhibits a power-law
stress dependence _" / �n with n ¼ 3 [14]. If glide is
considered in a creep model, Weertman has shown that
the stress exponent increases to n ¼ 4:5; see Ref. [15] and
references therein. In fact, the exponent is between 4 and 8
from experiments [16], which hints at more complex glide-
climb couplings in dislocation creep. Interestingly, recent

atomistic simulations, based on a kinetic Monte Carlo
scheme, and accounting only for climb, yielded n � 5 in
bcc iron [10]. However, when this prediction is extrapo-
lated to lower, realistic dislocation densities and applied
stress levels, n is found to be no more than 3.5 [3], con-
sistent with any creep model based on pure climb [15].
Here, we also explore the extent to which the explicit
consideration of both climb and glide delivers experimen-
tally reported stress exponents.
In the current literature, three-dimensional discrete dis-

location dynamics formulations of coupled glide and climb
remain scarce [11] and do not address creep predictions.
Some of the remaining challenges involve bridging the
disparate time scales and incorporating a precise coupling
between elasticity and diffusion. Therefore, the investiga-
tion of creep is of considerable importance, but even in two
dimensions (2D), this problem has not been solved yet.
We consider a simplified 2D model specimen subjected

to plane strain uniaxial loading at constant average stress
with traction-free top and bottom surfaces, Fig. 1(a). The
specimen initially contains discrete edge dislocations, dis-
location sources, and obstacles embedded in a linear elastic
material. The instantaneous state of the system is charac-
terized by the positions of all dislocations, xiðtÞ (i ¼
1; 2; 3; . . . ), and a continuous field of the fractional vacancy
concentration, cðx; tÞ. The long- and short-range disloca-
tion interactions are handled as in Refs. [17,18] using the
finite-element method. The driving force for dislocation
motion is the generalized Peach-Koehler force while the
driving force for vacancy diffusion is the gradient of the
chemical potential �, both of which may be obtained from
derivatives of the Gibbs free-energy function Gðxi; cÞ. The
governing equations for vacancy diffusion are

_c ¼ �r � Jþ _csrc; (1)

J ¼ �D�

kT
r�; (2)
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� ¼ kT

�

�
Ef

kT
� p�v

kT
þ log

c

ð1� cÞ
�
: (3)

Equation (1) follows from mass conservation where J
denotes the volumetric flux of vacancies and _csrc is a
production term (see below). In Eqs. (2) and (3), k is
Boltzmann’s constant, T the absolute temperature, � the
atomic volume, Ef the vacancy formation energy, p ¼
pðx; tÞ denotes the hydrostatic pressure field, �v the

vacancy relaxation volume, and D ¼ D0 expð� Em

kTÞ the

vacancy diffusion coefficient, with Em the vacancy migra-
tion energy. In the absence of pressure gradients, Eq. (2)
reduces to Fick’s first law of diffusion. The glide velocity
vi
g of dislocation i is taken to be proportional to the glide

component of the Peach-Koehler force fig, as

vi
g ¼ fig=BðTÞ; (4)

where the drag factor B varies linearly with temperature
[13]. In the most fundamental formulation, the climb ve-
locity vi

c is determined by mass conservation from bivi
c ¼R

@Ci J � ndS, where @Ci denotes the dislocation core

boundary with inward unit normal n, so that _csrc ¼ 0 in
(1). To circumvent the computational complexity of such
an approach, vi

c is estimated from the net flux of vacancies
to and from the dislocation core and mass conservation,
over a larger volume under steady-state climb conditions
and assumed radial symmetry around the core [13,19]

vi
c ¼ ��

D

bi

�
c0 exp

�
� fic�

bikT

�
� c

�
: (5)

The first term in brackets is the concentration of vacancies
in equilibrium with the core, where fic denotes the climb
component of the Peach-Koehler force, bi is the magnitude

of the Burgers vector, and c0 ¼ expð�Ef=kTÞ is the

equilibrium vacancy concentration in a bulk material at
temperature T. c is the ambient vacancy concentration
away from the dislocation core, here obtained from the
solution of the global diffusion equations interpolated to
the dislocation position under the assumption that the
dislocation core radius is much smaller than the length
scale of the gradients of c. � is a constant of order unity.
As shown in Ref. [3], the performance of analytical esti-
mate (5) against atomistic simulations is remarkable.
Consistent with this, the term _csrc is added to (1) to account
for the net absorption or emission of vacancies in the
volume element.
In order to perform creep simulations over time dura-

tions sufficient to establish a steady state, we used an
adaptive scheme to increment the simulation time step
proceeding as follows. We first relaxed the initial disloca-
tion microstructures at zero stress until the dislocations
attained quasiequilibrium positions. Thereafter, we applied
the creep stress (below the nominal yield stress of the
specimen) and performed the simulation using a small
time step of 0.5 ns to resolve glide-related events until
the overall strain attained a constant value as determined
by measuring the average slope of the strain versus time
plot over a predefined interval. Attainment of such a
‘‘jammed’’ or quasiequilibrium state enables observation
of creep deformation over macroscopically relevant time
scales. Indeed, at that point, we computed the evolution of
the vacancy field by solving Eqs. (1)–(3) using the finite
element method and a much larger value of the time step,
dependent on temperature as per the analytical estimate (5)
for climbing to a neighboring slip plane. Dirichlet bound-
ary conditions were imposed for c corresponding to the
equilibrium concentrations at the boundaries consistent

FIG. 1 (color online). (a) Sketch of computational specimen containing discrete edge dislocations on two independent slip systems
oriented at�35:25� with respect to the axis of loading (horizontal). (b) Contours of vacancy concentration superposed on the positions
of dislocations (positive: black; negative: gray) before the first climb event in a creep simulation (� ¼ 40 MPa, T ¼ 400 K).
(c) Magnified view of a 1:5� 0:5 �m region around the climbing dislocation (red circle). (d) Typical contours of slip over a time
interval of 200 s around t ¼ 4000 s in the same creep simulation.
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with the imposed tractions. The initial c field was specified
according to the steady-state solution of Eq. (1), with _c¼0
and _csrc ¼ 0. Because of the much larger value of the time
step used, the diffusion equations are solved using a fully
implicit algorithm as opposed to a simple forward Euler
scheme for the glide steps. When the first ‘‘activation
event’’ is detected, i.e., when any dislocation climbs to a
new slip plane thereby enabling further glide, the time step
is reverted to the fine 0.5 ns value. Note that the dislocation
dynamics (DD) and the vacancy diffusion problems are
inherently coupled since the frequency and locations of the
dislocation climb events are determined by the vacancy
distribution according to Eq. (5) and any production or
annihilation of vacancies due to climb affects the evolution
of the vacancy field through the production term in Eq. (1).

We performed all simulations using physical prop-
erties of fcc aluminum: Young’s modulus E ¼ 70 GPa,
Poisson’s ratio � ¼ 0:33, Ef ¼ 0:67 eV, Em ¼ 0:61 eV,

D0 ¼ 1:51� 10�5 m2=s [20]. Also, BðTÞ ¼ 10�4 �
ðT=300Þ Pa s, � ¼ 16:3 �A3, and b ¼ 0:25 nm. The re-
laxation volume of a vacancy in Al is neglected and the
geometry factor � in (5) is taken to be unity. The tempera-
ture dependence of the elastic properties is neglected.
Figure 1(b) shows the dislocation positions before the
first climb event in a creep simulation of a 12� 4 �m2

specimen at T ¼ 400 K and � ¼ 40 MPa superposed with
contours of the normalized vacancy concentration c=c0.
Figure 1(c) shows a magnified view of a 1:5� 0:5 �m2

region around the climbing dislocation. Figure 1(d) shows
the contours of cumulated plastic slip over a 200 s time
interval in the same specimen. Unlike in a plasticity simu-
lation by pure glide, which shows sharp slip traces oriented
along the slip planes, Fig. 1(d) shows some bands oriented
normal to the slip planes, indicating dislocation climb
activity.

A large number of creep simulations have been carried
out in the temperature range T ¼ 400–800 K (0:43Tm–
0:86Tm, Tm ¼ 933 K for Al) and stresses � ¼
10–90 MPa [spanning the range 10�4 G–10�3 G for the
resolved shear stress with G ¼ E=ð2ð1þ �ÞÞ the shear
modulus]. Figure 2(a) shows the creep curves obtained
from the DD simulations at T ¼ 400 K (0:43Tm) and
several values of the creep stress. The high-temperature
DD simulations yield a steady-state creep response with
the strain rate increasing with the applied stress. A char-
acteristic feature of steady-state creep is that the material
microstructure remains unchanged with time on average.
An average description of the microstructure in the present
problem is the dislocation density, which is plotted as a
function of time in Fig. 2(b) corresponding to the creep
curves in Fig. 2(a). Following a rapid initial transient, the
dislocation density evolves slowly with time except at high
stresses, indicating that steady-state conditions have been
attained. The steady-state creep rates depend exponentially
on the temperature, and the relationship between the

creep rates and the temperature follows an Arrhenius-
type equation

_� ¼ _�0 exp

�
� Q

kT

�
; (6)

where the activation energy for creep Q is experimentally
known to be close to the activation energy for self-
diffusion, Es ¼ Ef þ Em. The former may be determined

from the negative slope of the logarithm of the strain rate
plotted as a function of the reciprocal temperature, as
shown in Fig. 3 for various values of the creep stress.
Notice that a more or less constant slope is obtained for
the activation plot irrespective of the creep stress, and the
measured value of Q ¼ 120 kJ=mol compares favorably
with the value of Es ¼ 123 kJ=mol assumed in the simu-
lations. The emergence of creep from DD simulations
[Figs. 2(a) and 3] is the main result of this Letter.
The stress dependence of the creep rate has been probed

in the temperature range T ¼ 400–800 K. Figure 4 plots
the steady-state creep rates (determined approximately by
a linear least-squares fit to the �-t plots) as a function of the
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FIG. 2 (color online). (a) Creep curves showing the total strain
� as a function of time t for various values of the creep stress at
T ¼ 400 K. (b) Corresponding evolution of the dislocation
density �.
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FIG. 3 (color online). Variation of the creep strain rate as a
function of reciprocal temperature for various values of the creep
stress. The Arrhenius activation energy for creep estimated from
the average slopes of the above plots is approximately
120 kJ=mol.
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creep stress at T ¼ 600 K on a log-log scale and illustrates
the typical emergent behavior. A minimum of three sets of
simulations have been performed using different realiza-
tions of the initial dislocation, source, and obstacle
structure for a given value of the creep stress. These
attributes of the initial microstructure are chosen so that
the nominal yield stress in a displacement driven simula-
tion is �80–90 MPa. The slope of the log-log plot gives
the stress exponent n. The results show two distinct
regimes where the stress exponent approaches unity
towards low values of the creep stress (�� 10�4 G) while
n � 5 is obtained at high stresses (�� 10�3 G).

The creep strain in Fig. 2(a) has two components: one
is mechanical that results from dislocation motion, the
other is diffusive due to transport of matter towards the
loaded ends of the specimen. The average creep rate due
to mass transport _�d is estimated as the total volumetric
flux of vacancies from the end faces normalized by the
volume of the specimen. The inset in Fig. 4 plots just the
diffusion component of the creep strain rate _�d as a
function of the stress. The latter yields a stress scaling
exponent n ¼ 1 as expected for the Nabarro-Herring
creep mechanism. Also, it is clear that at T ¼ 600 K,
the diffusion contribution to the overall creep rate is
negligible compared to that due to combined dislocation
glide and climb. The same qualitative behavior as in
Fig. 4 is obtained at all temperatures above 0:4Tm.
Figure 5 summarizes the results of our simulations and
shows the measured value of n at low and high stresses as
a function of temperature. Values of n close to unity are
obtained at low stresses while at high stresses the pre-
dicted values of n span the range 5–7, well within the
experimental range of 4–8.

The good agreement between the calculated and mea-
sured power-law creep exponents is a major result of this
Letter. We note, however, that a 2D treatment of dislocation
dynamics sets restrictions on (i) the actual degrees of free-
dom that flexible dislocations have, and (ii) the incorpora-
tion of other recovery mechanisms, such as cross slip [21],
or bypassing versus shearing of precipitates. It remains to
be seen what stress exponents will emerge from fully 3D
simulations, properly extended as done here in 2D.
Our results show that mesoscale simulation methods

such as DD can provide new insights into aspects of
material behavior heretofore not explained using contin-
uum approaches. Unlike fully discrete methods such as
molecular dynamics, mesoscale methods offer better scal-
ability to larger and more complex problems. Beyond the
athermal interactions of dislocations considered in most
DD studies, thermally activated mechanisms of deforma-
tion predominate under different regimes of stress and
temperature, as illustrated succinctly in deformation
mechanism maps [16]. Our results show that power-law
exponents of 5 and higher emerge, at realistic levels of
stress and dislocation density, when both climb and glide
are modeled and that the collective behavior of disloca-
tions, which is not amenable to simple analytical treatment,
contributes to the power-law dependence.
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