
Superfluidity of Bosons in Kagome Lattices with Frustration

Yi-Zhuang You, Zhu Chen, Xiao-Qi Sun, and Hui Zhai*

Institute for Advanced Study, Tsinghua University, Beijing 100084, China
(Received 7 August 2012; revised manuscript received 16 October 2012; published 28 December 2012)

In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site

interaction, and the sign of hopping is inverted by insetting a � flux in each triangle of the kagome lattice

so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the

infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K

point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature

increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired

superfluid order will remain. We establish that this trion superfluid exists in a broad temperature regime

until the temperature is increased to the same order of hopping and then the system turns into normal

phases. Finally, we show that time-of-flight measurement of the momentum distribution and its noise

correlation can be used to distinguish these three phases.
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Flatband models have attracted considerable theoretical
interest recently [1–13] because the single particle energies
are degenerate inside the flatband; therefore, interactions
play a dominant role in the many-body system and lead to
many interesting quantum phases [7–13]. Among many
different physical realizations of lattice models with flat-
band, a kagome lattice with only nearest neighbor hopping
is perhaps one of the simplest. Recently, such a model has
been realized experimentally using optical lattices by the
Berkeley group [14]. However, the flatband in a normal
kagome lattice is the highest band. By fast shaking the
optical lattices, one can invert the sign of hopping, which
has also been demonstrated experimentally for triangular
optical lattices [15]. This technique can be applied straight-
forwardly to the kagome lattices. When the sign of hopping
is inverted, it is equivalent to inserting a � flux in each
triangle of the kagome lattice [16], and the flatband
becomes the lowest band, as shown in Fig. 1.

In this Letter we consider spinless bosons with on-site
interaction on the kagome lattice with sign-inverted hop-
ping, such that the boson condensation is frustrated. Here
we focus on the high-density superfluid (SF) regime, since
those strongly correlated phases, such as the Mott insulator
[7,8], the Wigner crystal [9], and the quantum Hall state
[10,11], usually occur in the low-density regime. This high-
density limit corresponds to a real system with a kagome
optical lattice in the xy plane and weak confinement poten-
tial along the ẑ direction. Therefore, each site is in fact a tube
inside which bosons form a quasicondensate, and tunneling
couples different tubes into a two-dimensional Josephson
array described by a boson Hubbard model.

Here we shall discuss whether and how bosons can
condense in the flatband, and what exotic type of superfluid
occurs at finite temperature. The main findings are as
follows.

(1) As the temperature increases, the system exhibits

three different phases: a K-point (
ffiffiffi
3

p � ffiffiffi
3

p
) superfluid

phase, with bosons condensed to the single particle
Bloch state at the momentum K point; an exotic ‘‘trion
superfluid’’ phase, with triple-boson (quasi-)long-range
order in the absence of single-boson ordering; and a normal
phase of thermal boson gas without any order.
(2) The three phases are separated by two phase tran-

sitions at very different temperature scales. The higher one
is of the hopping energy scale, while the lower one is 3
orders of magnitude smaller. Thus we predict a large
temperature window in which the trion superfluid phase
can be observed in experiments.
(3) We show that the time-of-flight (TOF) detection of

momentum distribution can distinguish these three phases,
and the third-order noise correlation provides a more direct
evidence of the trion superfluid phase.
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FIG. 1. (a) Kagome lattice, partitioned into A, B, C sublattices.
(b) Band structure with inverted hopping sign, where � ¼ ð0; 0Þ,
K ¼ ð2�=3; 0Þ, and M ¼ ð�=2; �=2 ffiffiffi

3
p Þ. (c) Mean-field energy

landscape for different U�=t. Energy shifted by E0 ¼ �2tþ
U�=3.
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It has been a long-term effort to search for exotic
bosonic state without single-boson superfluid order. In
previous studies, two-boson paired superfluids (or
charge-4e superconductor as paired Cooper pairs) have
been proposed in various systems [17–25]. As far as we
know, this is the first time that a triple-boson paired super-
fluid is proposed, and the underlying physics, i.e., the
frustrated hopping in kagome geometry, is also different
from that of previous examples. Moreover, unlike previous
proposals where unconventional superfluids always take
place at very low temperature, here the trion superfluid
exists in a relatively high temperature regime, and, thus, it
is easier for experimental realization. These results may
also be generalized to interacting bosons in other flatband
models with geometric frustration.

Band structure and mean-field.—The boson Hubbard
model on the kagome lattice with � flux in each triangle

is given by Ĥ ¼ Ĥt þ ĤU, with the hopping term Ĥt ¼
t
P

hijib̂
y
i b̂j þ H:c:, and the interaction term ĤU ¼

U
P

in̂iðn̂i � 1Þ ��
P

in̂i, where n̂i ¼ b̂yi b̂i. Here t is posi-
tive [16]. In the momentum space, the hopping

Hamiltonian reads Ĥt ¼
P

kb̂
y
khðkÞb̂k with b̂k ¼

ðb̂kA; b̂kB; b̂kCÞT and

hðkÞ ¼ 2t

0 cosk3 cosk2

cosk3 0 cosk1

cosk2 cosk1 0

0
BB@

1
CCA; (1)

where ki � k � ai, and a1 ¼ ð1; 0Þ, a2 ¼ ð� 1
2 ;

ffiffi
3

p
2 Þ, a3 ¼

ð� 1
2 ;�

ffiffi
3

p
2 Þ as shown in Fig. 1(a). Its lowest band is per-

fectly flat with a quadratic band touching at the � point, as
shown in Fig. 1(b).

Because of the infinite degeneracy of the single particle
ground state, free bosons cannot condense. At the mean-
field level, we first consider the single particle state with
translational symmetry labeled by momentum k. Taking

the mean-field ansatz hb̂ki ¼ z � ðzA; zB; zCÞT with the
normalization condition zyz ¼ �, where � is the boson
filling per unit cell, we can minimize the mean-field energy
function Ek½z� ¼ zyhðkÞzþUðjzAj4 þ jzBj4 þ jzCj4Þ with
respect to z, and denote the optimal energy as Ek ¼
minzEk½z�. This mean-field energy landscape in Fig. 1(c)
shows that the single particle degeneracy is lifted by the
Hartree energy. � and K points are selected out to be
the energy minimum. This is because inside the flatband,
the single particle wave functions have equal amplitudes
among the three sublattices only at � and K points, and
their uniform densities are favored by the repulsive
interaction.

The Bloch wave functions for � and K points are deter-
mined by minimizing the mean-field energy,

c �ðriÞ ¼ 1ffiffiffi
3

p ð1; e�2�i=3; e�2�i=3ÞT;

c KðriÞ ¼ 1ffiffiffi
3

p eikK�rið1;�1;�1ÞT;
(2)

with kK ¼ ð2�=3; 0Þ. In real space, both two wave func-
tions satisfy two conditions: (i) their densities are uniform,
which minimize the mean-field interaction energy, and
(ii) their phases follow the ‘‘3-color arrangement,’’ mean-
ing that each pair of two neighboring sites takes different

phases out of 1, e2�i=3 and e�2�i=3, as depicted in Fig. 2,
such that the kinetic energy is also minimized. The mean-
field energy is minimized to E0 ¼ �2tþU�=3, as long as
both conditions (i) and (ii) are satisfied, while the trans-
lation invariance is not a necessary condition and can be
released. Then one can find extensive numbers of state
without translation invariance but satisfying both (i) and
(ii), as exemplified in Figs. 2(c) and 2(d).
Quantum fluctuation and order from disorder.—The

extensive number of degenerate mean-field states can be
further lifted by quantum fluctuations, because the zero-
point energy (ZPE) of Bogoliubov phonons is different for
different mean-field states. For a given mean-field configu-

ration hb̂ii ¼ ffiffiffiffi
�

p
ei�i , its Bogoliubov Hamiltonian is

H½�i� ¼ t
X
hiji

ðb̂yi b̂j þ H:c:Þ ��
X
i

b̂yi b̂i

þU�
X
i

ð2b̂yi b̂i þ e2i�i b̂yi b̂
y
i þ H:c:Þ; (3)

where � ¼ �2tþ 2U�=3. Diagonalization ofH½�i� leads
to H½�i� ¼

P
m!m½�i�ð�̂y

m�̂m þ 1=2Þ, with �̂m being a
Bogoliubov boson operator. Thus the ZPE associated

FIG. 2 (color online). (a), (b) Phase configurations of the
condensates at the � point (a) and the K point (b), (c),
(d) random 3-color arrangement. Phase �i is denoted by colors:
red circle ¼ 0, green square ¼ 2�i=3, blue triangle¼� 2�i=3.
‘‘�’’ mark out the vorticity around each triangle. (a) c � is a
‘‘vorticity ferromagnetic’’ state and (b) c K is a ‘‘vorticity
antiferromagnetic’’ state.
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with this given f�ig configuration equals to �½�i� ¼
1
2

P
m!m½�i� by setting �̂y

m�̂m ¼ 0.

For condensates at the � and K points, the Bogoliubov
excitations have quantum number k and they have well-
defined dispersion, as shown in Fig. 3(a). One finds that the
sound velocity c of the K-point condensate is smaller that
that of the �-point condensate; hence, the K-point conden-
sate as a lower ZPE, as�� c2. This is also evidenced from
the mean-field energy landscape, as shown in Fig. 1(c),
where the energy landscape changes less rapidly near theK
point than that near the � point, indicating softer Goldstone
mode and lower ZPE.

For a generic mean-field state in the degenerate mani-
fold, the Bogoliubov spectrum has no well-defined disper-
sion because of the absence of translation symmetry. Here
we randomly sample 4000 configurations on a 240-site
kagome lattice with uniform density and satisfying the
3-color arrangement, and then we calculate their ZPEs
numerically. We find that their ZPEs all rest between the
�-point condensate and the K-point condensate, i.e.,
8f�ig: �½K� 	 �½�i� 	 �½��, as seen from Fig. 3(b). So
the degeneracy can be completely removed via the order-
by-disorder mechanism. At sufficiently low temperature,
bosons will condense to the K point (or its symmetry
related points).

Thermal fluctuation and phase diagram.—Because all
the ZPEs are in the range from�½K� to�½��, it is natural to
introduce the energy scale for zero-point fluctuation as
J ¼ �½�� ��½K�. Beyond this energy scale, the conden-
sation at the K point will be destroyed. As shown in
Fig. 3(c), J will vanish in both the small and large U limit.
The asymptotic behavior goes like J / U� for U� 
 t

and J / t3=2ðU�Þ�1=2 for U� � t. The maximum of J is
achieved around U�=t ¼ 3. It is remarkable to find that
even the maximum value of J is 3 orders of magnitude

smaller than t. It is still quite challenging to reach such a
low temperature in current cold atom experiments.
However, the conventional Bose condensate at the low-

est temperature is not the most interesting phase. The most
interesting phase in this system exists at the temperature
regime kBT > J. In this regime, the system will enter a
thermal mixed state in which all mean-field configurations
satisfying conditions (i) and (ii) mentioned above are
almost equally populated. In this thermal mixed state, for
each site the condensate phase can take �i ¼ 0, �2�=3
with equal probabilities. Thus, the single boson correlation

will become short ranged, i.e., hb̂yi b̂ji ¼ �she�i�iei�ji ! 0.

However, as long as the 3-color arrangement is satisfied, at
every site e3i�i � 1 always holds. Thus, the triple-bosons
operator can still possess long-range correlation; i.e.,

hb̂y3i b̂3j i ¼ �3
she�3i�ie3i�ji ! �3

s [26]. This trion SF sup-

ports many interesting properties, such as 1=3 fractional-
ized vortices, which will be studied in the future.
Since the 3-color arrangement is enforced by the kinetic

energy, bosons will condense in triples as long as T < t.
When T is increased to�t, the long wavelength fluctuation
of the Uð1Þ phase will lead to a Kosterlitz-Thouless phase
transition from the trion SF to the normal state. This tran-
sition temperature can be estimated from the superfluid
stiffness, which can be calculated from the free-energy
response to the phase twist. Let bi ¼ wie

i�ieiq�ri , where
eiq�ri is the applied phase twist. In the temperature regime
T � J, we can ignore the zero-point energy, and the energy

functional for a given f�ig configuration reads Eq½�i; wi� ¼
t
P

hijiðw�
i wje

�ið�i��jÞe�iq�ðri�rjÞ þ H:c:Þ þU
P

ijwij4, and

because all the configurations must be taken into account
under thermal average, the averaged energy functional
reads

Eq½wi� ¼
X
f�ig

Eq½�i; wi�

¼ � t

2

X
hiji

ðw�
i wje

�iq�ðri�rjÞ þ H:c:Þ þU
X
i

jwij4:

(4)

It is interesting to note that Eq. (4) is the same as a mean-
field energy of bosons in the kagome lattice without frus-
tration, because the sign of hopping is now inverted back.
Mathematically, it is because taking thermal averages leads

to heið�i��jÞi ¼ �1=2. Since the kinetic energy frustration is
released, trion SF will have a finite stiffness. It can be
obtained by minimizing Eq½wi� with respect to wi and

expanding the optimal energy in terms of small q, which

leads to minfwigEq½wi� ’ �2tþ U�
3 þ 1

2 tq
2. Therefore, the

stiffness is t, which gives an estimate of the Kosterlitz-
Thouless transition temperature as TKT ¼ t=�. For Rb
atoms, t is around 15 nK with a moderate lattice depth,
and thus TKT is a few nK.
With the analysis above, we reach the phase

diagram as shown in Fig. 4(a). In Fig. 4(b), we
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FIG. 3. (a) Bogoliubov spectra for �-point (left) and K-point
(right) condensates at U�=t ¼ 0:3. Momentum points are de-
fined as A ¼ ð�=3; 0Þ and B ¼ ð�=3; �=3 ffiffiffi

3
p Þ. (b) Distribution

of the zero-point energy (ZPE) � of the degenerate mean-field
configurations. Two dashed lines denote the ZPE for K- and
�-point condensates. The vertical axis is the probability for the
particular ZPE. (c) J=t vs U�=t plot.
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show the one-boson and three-boson correlation function
as a function of temperature for a fixed U�=t.

The one-particle correlation hb̂yi b̂ji is calculated as

�s

P
f�ige

�ið�i��jÞe��½�i�=T , where the configuration summa-

tion can be restricted in the 3-color arrangement patterns,
since other configurations cost energy of the order t
and their contribution is negligible at low temperature
around the order J. While on the other hand, when

we calculate the three-boson correlation hb̂y3i b̂3j i ¼
�3
s

P
f�ige

�3ið�i��jÞe�E½�i�=T , the summation goes over all

configurations f�ig, and the energy is given by E½�i� ¼
2t
P

hiji cosð�i � �jÞ, where we have ignored the ZPE as it

is negligible compared to E½�i�. Figure 4(b) shows that
there indeed exists a large temperature window where the
one-boson correlation function vanishes while the three-
boson correlation function remains finite.

Detection.—Finally, we show that the difference between
these three phases can be detected by a straightforward
measurement of momentum distribution via a TOF image
[27]. When bosons condense into K points of the Brillouin
zone, aTOF imagewill display sharpBragg peaks atK points
(or its equivalentK0 points) in the reciprocal lattice, as shown
in Fig. 5(a).Moreover, due to the interference effect from the
phase structure satisfying the 3-color arrangement, it is easy
to show that the strongest peaks do not appear in the first
Brillouin zone, but instead at its reciprocal lattice vector
points in the secondBrillouin zone.As temperature increases
to the trion SF phase, all the 3-color arrangements are ther-
mallymixed, and the Bragg peak at theK point disappears as
the single-boson superfluid order vanishes. However, in con-
trast to the normal state, the TOF image displays nontrivial
features as shown in Fig. 5(b). A large honeycomb structure
appears, and the hexagon is 4 times the area of the first

Brillouin zone, and the intensity at the � point is always
zero, because the zero-momentum component of the Fourier
transformation is exactly cancelled out due to the 3-color
arrangement. At the highest temperature normal state, the
TOF image becomes a featureless Gaussian and the intensity
at the � point becomes the maximum, as shown in Fig. 5(c).
Thus, we predict that the intensity at the K point rapidly
decreases at the transition from K-point condensate to trion
SF, and the intensity of the � point rapidly increases at the
transition from trion SF to normal state, as shown inFig. 4(c).
In addition, the trion SF order can also be probed by

analyzing the three-point noise correlation of the TOF
images. This requires repeating the TOF experiment many
times to obtain the noise signal �nk ¼ nk � hnki for
each image, as shown in Fig. 5(b) [28,29]. We propose
that the triple-boson long-range correlation can be
observed from the three-point noise correlation CðkÞ ¼P

k1þk2þk3¼kh�nk1�nk2�nk3i, where it is important to col-

lect information from all the points satisfying k1 þ k2 þ
k3 ¼ k into CðkÞ. It is straightforward to show that this
noise correlation displays sharp feature only in the trion SF
phase, and the triple-boson correlation is directly related to

the noise correlation via hb̂y3i b̂3j i / P
k1;2;3

h�nk1�nk2�nk3i�
e�iðk1þk2þk3Þðri�rjÞ. Therefore, CðkÞ shows sharp peaks at �
points in the trion SF phase, as in Fig. 5(d), providing direct

evidence for the long-range correlation of hb̂y3i b̂3j i.
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