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Ultracold atoms in Raman-dressed optical lattices allow for effective momentum-dependent interac-

tions among single-species fermions originating from short-range s-wave interactions. These dressed-state

interactions combined with the very flat bands encountered in the recently introduced optical flux lattices

push the Stoner instability towards weaker repulsive interactions, making it accessible with current

experiments. As a consequence of the coupling between spin and orbital degrees of freedom, the magnetic

phase features Ising nematic order.
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Recently, considerable effort has been made to observe
the Stoner instability to itinerant ferromagnetismwith ultra-
cold gases [1–5]. So far, this effort has been fruitless, and it
has been argued that rapid dimer formation at the large
coupling strength that is required for ferromagnetism pre-
cludes the formation of magnetic domains [6,7]. Here, we
show that atoms subjected to optical lattices involving
coherent Raman coupling of internal states can have a
strongly enhanced Stoner instability. The ferromagnetic
phase appears at much weaker coupling strength where
the gas is less susceptible to dimer formation.
Furthermore, our results display several intriguing novel
phenomena, such as interaction-induced phase transitions
between distinct Fermi surface topologies and nematic
ordering, allowing close parallels between the physics of
cold gases and phenomena in diverse systems such as high-
temperature superconductors, ruthenates, and quantumHall
systems [8].

Central to our studies are the novel effects that arise
when atoms are subjected to Raman dressing. Raman
dressing has recently been used in experiments to create
artificial gauge potentials [9–11] and to induce effective
higher partial-wave interactions among identical bosons
from short-ranged s-wave interactions [12]. We consider
an atomic Fermi gas subjected to an optical flux lattice
[13], in which both of these effects are important. The
orbital effects of the gauge field cause the lowest energy
band of the optical flux lattice to be very narrow in energy
even for a shallow lattice far from the tight-binding limit.
Interactions among fermionic atoms in this lowest band
remain sizeable [14]. Simple s-wave interactions between
distinct bare fermions give rise to effective interactions of
non-zero range among single species fermions of the low-
est band [14,15]. We show that these interactions, within
this narrow band, cause a ferromagnetic transition at a
much smaller coupling than that in the continuum. In
view of the coupling of spin and orbital motion through
the Raman dressing, the ferromagnetic transition appears
as a change in Fermi surface topology. Furthermore, it is
accompanied by a reduction of the (spatial) crystal

symmetry so also involves nematic order [8]. As we
describe, this coupling of spin and orbital motion allows
the magnetic or nematic ordering to be readily measured in
experiment by band-mapping techniques.
We consider the implementation of an optical flux lattice

of Ref. [14], which involves two-photon dressing of hy-
perfine states. We focus on an atomic species with ground-
state angular momentum F ¼ 1=2, but our key ideas are
readily extended to atoms with larger F as described at the
end of the Letter. We further restrict attention to a quasi-2D
geometry, assuming an in-plane confinement energy that is
large compared to all other energy scales.
The optical flux lattice is formed by interference of three

linearly polarized in-plane laser beams with wave vectors

�1 ¼ ��=2ð ffiffiffi
3

p
; 1Þ, �2 ¼ �=2ð ffiffiffi

3
p

;�1Þ, and �3 ¼ �ð0; 1Þ.
A fourth circular polarized laser beam, oriented perpen-
dicular to the 2D plane, provides the other frequency
required for two-photon Raman coupling of the Zeeman-
split hyperfine states.
This optical potential leads to a single particle

Hamiltonian

Ĥ 0 ¼ p2

2m
1̂þ VscðrÞ1̂þ �̂ �BðrÞ; (1)

in which the atom experiences a scalar potential

Vsc ¼ V0ð3cos2ð�Þ � 1ÞX
j

cosð�0
j � rÞ; (2)

and its spin �̂ couples to an effective magnetic field

Bz ¼
ffiffiffi
3

p
V0sin

2ð�ÞX
j

sinð�0
j � rÞ; (3)

Bx þ iBy ¼ �V0 cosð�Þ
X
j

e�i�j�r: (4)

V0 denotes the lattice depth, � is the polarization angle of
the in-plane beams with respect to the surface normal, � is
proportional to the ratio between Raman coupling and
scalar potential, and �0

1 ¼ �1 � �2, �
0
2 ¼ �3 � �1, and

�0
3 ¼ �2 � �3 [14]. The geometry of the Raman beams
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is such that conversion from spin " to spin # involves a
momentum exchange of �1, �2, or �3. This causes the spin
character of the Bloch states to vary with crystal momen-
tum within the Brillouin zone. (The reciprocal lattice basis
vectors can be taken to be G1 � �1 � �3 and G2 � �2 �
�3.) Notably, for vanishing lattice depth V0 ¼ 0, when the
energy eigenstates are simply plane waves for spin " and
spin # , the crystal momentum for the spin- # ( " ) state with
zero kinetic energy is simply �1 (� �2) or any equivalent
point related by the addition of reciprocal lattice vectors.
Hence, the crystal momenta of the two spin states are
displaced from each other within the Brillouin zone. In
this limit V0 ¼ 0, an unpolarized state of noninteracting
fermions therefore appears as two filled Fermi circles,
centered on �1 (� �2) for spin # ( " ) and shown in blue
(red) in Fig. 1. The difference from the conventional pic-
ture of two Fermi circles centered on k ¼ 0 just reflects the
spin-dependent momentum offsets common to all forms of
Raman coupling involving momentum exchange [9].

The width of the lowest-energy band is shown in Fig. 1
as a function of the overall lattice depth V0 for fixed values
of � and �. The bandwidth passes through a minimum at
V0=ER ’ 2, with the recoil energy defined by ER �
@
2�2=ð2mÞ. This is the regime where the optical flux lattice

best mimics the orbital effects of a uniform magnetic field.
The lowest energy band is similar to a Landau level: with
small bandwidth and a Chern number of 1 [14]. In the

vicinity of this point, the positions of the band minima
change within the Brillouin zone. (Similar features are
found in tight-binding models of Chern insulators when
next nearest-neighbor hoppings are included [16].) This
reconstruction is illustrated in Fig. 1 by the noninteracting
Fermi surfaces shown for a band filling of � ¼ 1=4. Note
that at V0 ¼ 0 the Fermi surface consists of two discon-
nected circles: these are the spin-up and spin-down Fermi
surfaces, displaced in crystal momentum as described
above.
For nonzero V0=ER, the spin composition of the Bloch

state continuously varies with crystal momentum. As a
result, s-wave interactions between spin-up and spin-
down components lead to effective momentum-dependent
interactions between fermions in this band. It is remarkable
that even though we started with a model of short-ranged
interactions, we obtain an effective theory of interacting
spinless fermions [14].
Atoms restricted to states in the lowest band are

described by the effective Hamiltonian

Hlb ¼
X
k

�kc
y
kck þ 1

2

X
k1k2k3k4

Vk1k2k3k4
cyk1

cyk2
ck3

ck4
(5)

where �k is the band dispersion, cðyÞk are the fermionic field

operators for state of crystal momentum k, and

Vk1k2k3k4
¼ g2D

Z
d2r

X
�

��
k1�

ðrÞ��
k2 ��

ðrÞ�k3 ��ðrÞ�k4�ðrÞ

is the effective interaction in the lowest band in terms of the
eigenfunctions ð�k"ðrÞ; �k#ðrÞÞT of the single particle

Hamiltonian (1). In the following, we characterize the
bare interaction strength by the dimensionless coupling
parameter ~g � mg2D=@

2. In terms of the 3D s-wave scat-
tering length as and the harmonic oscillator length of the
transverse confinement lz (assuming the atoms are con-
fined to a 2D plane via a tight harmonic potential along the

z axis), one has ~g ¼ ffiffiffiffiffiffiffi
8�

p
as=lz, valid in the limit where

jasj � lz [17].
To study the effects of interactions, we perform a

Hartree-Fock (HF) variational approximation, which
results in the energy functional

E½fnkg� ¼
X
k

�knk þ 1

2

X
kk0

Vkk0nknk0 (6)

with Vkk0 ¼ Vkk0k0k � Vkk0kk0 . For our zero-temperature
results, we find the ground states that minimize Eq. (6) for
a fixed total number of particles N ¼ P

knk. This is
achieved by setting the occupation numbers nk equal to
unity for the N orbitals with lowest HF energies

�k ¼ �k þX
k0
Vkk0nk0 : (7)

We determine these energies self-consistently by numeri-
cal iteration, discretizing momenta of the Brillouin zone on

FIG. 1 (color online). Bandwidth W of the lowest band as a
function of lattice depth of the optical flux lattice discussed in
the main text (with � ¼ 0:3 and � ¼ 0:4). The inset shows the
dispersion of the lowest two bands for V0=ER ¼ 2:25. As the
lattice is ramped up, the dispersion of the lowest band develops a
minimum at the center of the Brillouin zone causing reconstruc-
tion of the Fermi surface for noninteracting particles. The loca-
tions where these reconstructions occur for filling � ¼ 1=4 are
marked by the dashed lines. For vanishing lattice depth V0 ¼ 0,
the Fermi circles of the spin " (red) and spin # (blue) are displaced
from each other to the corners of the Brillouin zone.
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a fine grid [18]. For our results at nonzero temperature
T, we instead find nk by minimizing the thermodynamic
potential � ¼ E� TS�	N where 	 is the chemical
potential and S¼�kB

P
knk lnðnkÞþð1�nkÞlnð1�nkÞ

is the entropy. The grand canonical potential is stationary

(
�=
nk ¼ 0) when nk ¼ 1=ðeð�k�	Þ=kBT þ 1Þ, which we
numerically iterate to self-consistency with Eq. (7). We
start from trial states with different symmetry and random
initial occupation numbers and then compare their grand
canonical potentials in order to find the minimum free-
energy configuration [19].

Our results show a robust ferromagnetic phase for a wide
range of parameters. To characterize this phase we use the
magnetization per particle along the z direction as an order
parameter

mz ¼ 1

�

Z
Acell

d2r½n"ðrÞ � n#ðrÞ�: (8)

In Fig. 2 we show the (modulus of the) calculated
order parameter at zero temperature for a band filling of
� ¼ 1=4, as a function of 2D coupling ~g and of lattice
depth V0=ER. These results are representative of other
fillings with � & 1=2. In the absence of any lattice,
V0=ER ¼ 0, there is a transition from paramagnet to ferro-
magnet at ~gc ¼ 2�. This is the conventional Stoner insta-
bility for fermions with contact repulsion in 2D [20]. This
transition appears as a reconstruction of the Fermi surface
from two Fermi circles to one Fermi circle. As the lattice
depth is increased, our results show a steady decrease of
the coupling at which the ferromagnetic transition occurs.

The minimum coupling for ferromagnetism arises for
V0=ER ’ 2, close to the condition for minimum band-
width; see Fig. 1. We find that the interaction strength ~gc
required is reduced from its free-space value by a factor of
about 1=4. This is one of the main results of this Letter: the
reduction of coupling as compared to the free-space case
means that ferromagnetism can be achieved without
requiring as close an approach to a Feshbach resonance.
A change of coupling by a factor of 1=4 is expected to have
a very dramatic reduction in the rate of dimer formation
[21–23]. Given this reduction in required interaction
strength, we can estimate the increase in lifetime in a 2D
gas from the experimental data of the Cambridge group
[24], where the lifetime of the repulsive Fermi polaron has
been measured as a function of interaction strength. A
change of coupling by a factor of 1=4 is expected to
increase the lifetime of the upper branch from about
h=EF by 2 decades to 100h=EF [25].
In addition to transitions between distinct Fermi surface

topologies, phases of interacting fermions can also sponta-
neously break lattice symmetries. For our model, we find
that the appearance of ferromagnetism, with nonzero mag-
netization, is also accompanied by a breaking of rotational
symmetry. We argue that this is a general feature of
Raman-dressed atomic systems. While spin-rotational in-
variance is explicitly broken by the coupling of spin and
orbital degrees of freedom, the optical flux lattice retains a
discrete symmetry. It is invariant under a spin-flip com-
bined with a 2�=6 rotation in real space

Û6 ¼ �̂xR̂2�=6: (9)

The Stoner ferromagnetic transition (effectively a
Pomeranchuk instability in the spin channel) causes spon-
taneous symmetry breaking of the C6 spin-rotation sym-

metry arising from Û6 down to a residual C3 symmetry

associated with Û2
6 ¼ R̂2�=3. This phase transition is analo-

gous to the lattice symmetry breaking in the electronic
Ising nematic phases in solid-state materials [8,26–28].
Since the order parameter of the symmetry broken phase
is in the 2D Ising universality class, we expect this phase to
survive to nonzero temperature.
The phase diagram at nonzero temperature is shown

in Fig. 3 as a function of chemical potential for a lattice
with V0=ER ¼ 2 and ~g ¼ 1:9. This shows that the ferro-
magnetic phase is a robust phase across a range of densities
and temperatures. The maximum transition temperature
of kBT ’ 0:14W at 	� �min ’ 1:54W corresponds to an
entropy per particle of S=N ’ 1:1kB. Entropies of this
order are being reached in current optical lattice
experiments [29].
While our mean-field theory neglects correlations [30]

that can lead to quantitative changes in the location of the
Stoner instability, detailed numerical studies of related
models show a robust ferromagnetic phase [4,5,31].
Strongly correlated phases, related to fractional quantum

FIG. 2 (color online). Magnetization of the ground state of
interacting fermions in the lowest band of the optical flux lattice
at uniform filling factor � ¼ 1=4 as a function of lattice depth
V0=ER and dimensionless coupling strength ~g. The gray shaded
areas on the insets illustrate occupied states in the first Brillouin
zone. White lines mark transitions between unmagnetized states
of different Fermi surface topology.
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Hall states, which cannot be accessed in HF theory, can
commonly coexist with ferromagnetism (at specific fil-
lings) [32–34]. We expect the reduction of the critical
coupling strength that we predict to be a robust feature,
since the shallow optical flux lattice leads to a significant
reduction in the bandwidth with small decrease in the
interaction matrix elements.

Experimental studies of the ferromagnetic transition we
predict will require the use of an atomic species for which
both strong interactions and Raman coupling can be
achieved without significant heating. For a hyperfine
ground state of F ¼ 1=2, the natural candidates are
171Yb or 199Hg [14]. For 171Yb, s-wave contact interactions
between the two states of the lowest hyperfine manifold (as
spin " = # ) can be conveniently tuned via an optical
Feshbach resonance [35,36]. Another possibility is to use
an effective two-level system formed by exploiting the
quadratic Zeeman effect to Raman couple two of the
hyperfine states in the F ¼ 9=2 ground-state manifold of
40K with neighboring mF [10]. The interstate interactions
can be conveniently tuned by one of the set of magnetic
Feshbach resonances that exist for these levels.

The most direct way to measure the order parameter, in
Figs. 2 and 3, is by individually imaging the total spin
populations N";#. An important practical consequence of

the coupling of spin and orbital degrees of freedom is that
total magnetization is not conserved. Hence, this allows the
formation of a macroscopic net magnetization starting
from an initially unpolarized gas. Measurements of the
net magnetization will give the average properties of the
inhomogeneous cloud in the trap. If in addition one could
measure the local in situ spin populations n";#ðrÞ along a

contour of fixed filling factor one could then map out the
phase diagram at different fillings and lattice depth analo-
gous to recent studies of two-dimensional Bose gases [37].
Another complementary probe sensitive to the (trap

averaged) Fermi surface of the dressed lowest band fermi-
ons is the adiabatic band mapping technique [38,39]. This
probe has the additional advantage that it also allows the
detection of unmagnetized phases with different Fermi
surface topologies. Here, the lattice potential is ramped
down at a rate slow compared to that of the band gap and
fast compared to that of many-particle dynamics. Then the
Raman-dressed Bloch states are adiabatically mapped onto
free-particle plane-wave states of definite spin, which can
be imaged after time-of-flight expansion.
The form of this mapping can be deduced by recalling

that for vanishing lattice depth, V0 ¼ 0, the spin- # ( " )
free-particle state with zero kinetic energy has crystal
momentum �1 (� �2) (or any point related by reciprocal
lattice vectors). Under adiabatic band mapping, a Bloch
state whose crystal momentum k is closer to �1 than to
��2 is mapped to the spin- # state with free-space momen-
tum q ¼ k� �1; if k is closer to ��2, the Bloch state is
mapped to the spin- " state with free-space momentum
q ¼ kþ �2. This construction is illustrated in Fig. 4.
For a completely filled lowest band, the occupied states

appear then as a hexagram (superimposed triangles for
spins " and # ) after band mapping as shown in Fig. 4(b).
A spin-resolved image of the cloud of atoms after band
mapping, obtained either by appropriate detuning of imag-
ing lasers or with a Stern-Gerlach filter, therefore allows
for the reconstruction of the occupation numbers nk.
Finally, we note that signatures of the change in Fermi
surface topology will also appear in the Hall response [40],
since the Berry curvature of the lowest band of the optical
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FIG. 3 (color online). Left: Magnetization for V0=ER ¼ 2,
� ¼ 0:3, � ¼ 0:4, and ~g ¼ 1:9 as a function of temperature
and chemical potential (scale same for mz as in Fig. 2). W is
the bandwidth, and 	� �min is the chemical potential measured
from the bottom of the lowest band. The red dots lie on the
spinodal where the symmetric state becomes unstable (the line is
a guide to the eye). Right: Occupation numbers nk within the
first Brillouin zone for ð	� �minÞ=W ¼ 0:89, 1.69, 2.19 corre-
spond to (a), (b), (c).

FIG. 4 (color online). Experimental signatures of adiabatic
band mapping. (a) Contour plot of the dispersion �k for
V0=ER ¼ 1:8, indicating a rhombus-shaped reciprocal lattice
unit cell. The Bloch states inside the upper red (lower blue)
triangle in (a) map to spin- " ( # ) states with free-space momen-
tum q illustrated in (b). For a completely filled lowest band, one
would observe a fully occupied hexagram (b). When the atoms
pass subsequently through a Stern-Gerlach filter, the two spin
states can be separately resolved. This would allow clear sig-
natures of the transition from the (c) unmagnetized to the
(d) magnetized phase.
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flux lattice is nonuniform [41], so the Hall coefficient is
sensitive to the distribution nk.
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