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At impact of a liquid drop on a solid surface, an air bubble can be entrapped. Here, we show that two

competing effects minimize the (relative) size of this entrained air bubble: for large drop impact velocity

and large droplets, the inertia of the liquid flattens the entrained bubble, whereas for small impact velocity

and small droplets, capillary forces minimize the entrained bubble. However, we demonstrate experi-

mentally, theoretically, and numerically that in between there is an optimum, leading to maximal air

bubble entrapment. For a 1.8 mm diameter ethanol droplet, this optimum is achieved at an impact velocity

of 0:25 m=s. Our results have a strong bearing on various applications in printing technology, micro-

electronics, immersion lithography, diagnostics, or agriculture.
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The impact of liquid droplets on surfaces is omnipresent
in nature and technology, ranging from falling raindrops to
applications in agriculture and inkjet printing. The crucial
question often is: How well does the liquid wet a surface?
The traditional view is that it is the surface tension which
gives a quantitative answer. However, it has been shown
recently that an air bubble can be entrapped under a liquid
drop as it impacts on the surface [1–6]. Also, Xu et al. [7,8]
revealed the important role of the surrounding air on the
impact dynamics, including a possible splash formation.
The mechanism works as follows [3–6]: The air between
the falling drop and the surface is strongly squeezed,
leading to a pressure buildup in the air under the drop.
The enhanced pressure results in a dimple formation in the
droplet and eventually, to the entrapment of an air bubble
[Fig. 1(a)]. The very simple question we ask and answer in
this Letter is: For which impact velocity is the entrapped
bubble maximal?

Our experimental setup is shown in Fig. 1(b) and is
similar to that of Refs. [9,10] where it is described in detail.
An ethanol drop impacts on a smooth glass surface after
detaching from a needle, or for velocities smaller than
0:32 m=s, after moving the needle downwards using a
linear translation stage. A high-speed side view recording
is used to measure the drop diameter and velocity. The
experiment is carried out at room temperature. A synchro-
nized bottom view recording by a high-speed color camera
is used to measure the deformed shape of the liquid drop.
Colored interference patterns are created by high-intensity
coaxial white light, which reflects from both the glass
surface and the bottom of the droplet. Using a color-
matching approach in combination with known reference
surfaces, the complete air thickness profile can be extracted
[shown in Fig. 1(c)]. For experiments done at larger impact
velocities (U > 0:76 m=s), we use a pulse of diffused laser
light triggered by an optical switch. The thickness of the air

film at the rim is assumed to be zero, and the complete air
thickness profile can then be obtained from the mono-
chromatic fringe pattern. From these measurements, we
can determine the dimple height, Hd, and the volume of
the entrained bubble, Vb, at the very moment of impact.
This moment is defined by the first wetting of the surface.
This is the moment when the concentric symmetry of the
interference rings is lost, since due to unavoidable tiny tilts
of the glass plate the wetting, in general, is nonaxisym-
metric. To calculate the bubble volume Vb, we integrate the
thickness profile of the air layer trapped beneath the drop.
Note that the dimple profiles and the volume of the
entrained bubble are obtained before the wetting occurs,
such that we do not have to take into account the properties
of the surface (e.g., contact angle or roughness, which is
of the order of 10 nm). Alternatively, we can also measure
the volume of the trapped bubble after impact when the
liquid already wets the surface. Both measurements pro-
vide the same results. In the present Letter, we use the first
approach.
The results are shown in Fig. 2. Clearly, both dimple

height at impact and the size of the entrained bubble have a
pronounced maximum as function of the impact velocity
U. The corresponding impact velocity for which the air
entrainment is optimal is Uo ¼ 0:25 m=s for an ethanol
droplet of radius R ¼ 0:9 mm (or the Stokes number
Sto ¼ 1� 104). While length scales are given in multiples
of the droplet radius R, following Brenner and coworkers
[3,6], we express the impact velocity U in terms of the
Stokes number St, defined with the dynamic air viscosity
�g ¼ 1:82� 10�5 Pa s and the liquid density �l as St ¼
�lRU=�g ¼ �l=�gRe, where Re ¼ �gRU=�g is the stan-

dard Reynolds number. A further relevant parameter of the
system is the surface tension �, which can be expressed
in terms of the Weber numberWe ¼ �lRU

2=� or in terms
of the capillary number Ca ¼ �gU=� ¼ We=St.
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We compare and supplement our experimental findings
on the dimple height at impact and the entrained bubble
size to numerical results. The numerics consists of an
axisymmetric boundary integral (BI) simulation for the
liquid droplet (i.e., the droplet is assumed to obey potential
flow), coupled to a lubrication approximation of the Stokes
equation

@Pg

@r
� �g

@2ur
@z2

; (1)

that describes the viscous, incompressible gas flow under
the droplet [3,11–14]. Here, z is the vertical direction,

Pgðr; tÞ is the gas pressure, while ur is the radially out-

ward velocity in the gas parallel to the surface [Fig. 1(a)].
Note that the gas flow under the droplet is indeed viscous:
An upper bound for the Reynolds number relevant for
the lubrication flow gives UHd=�g � 0:1 for the highest

impact velocity, and is typically much smaller for most of
our experiments.
We now give more details on the numerical simulation:

The velocity field inside the droplet is described with a
scalar velocity potential �, obeying the Laplace equation
r2� ¼ 0. The axisymmetric droplet contour is described
using cylindrical coordinates r, z and is solved numerically
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FIG. 2 (color online). Maximum entrapment of air bubbles. (a) Dimple heightHd and (b) entrained bubble volume Vb as functions of
the impact velocity U (upper axes) and Stokes number St (lower axes). The shape of the air layer can be characterized by the dimple
height Hd and the lateral extension L. Blue circles correspond to high-speed color interferometry measurements, red squares
correspond to numerical simulations. The straight lines correspond to the derived scaling laws in the capillary regime (solid) and
inertial regime (dashed) with the respective scaling exponents.
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FIG. 1 (color). Experimental characterization of air bubble entrapment. (a) Sketch of dimple formation (not drawn to scale) just prior
to impact. (b) Schematic of the experimental setup used to study droplet impact on smooth surfaces. An ethanol droplet of typical
radius R ¼ 0:9 mm falls on a glass slide of average roughness 10 nm. The impact velocity is varied by varying the falling height of the
droplet. For very small velocities below 0:31 m=s, the droplet is fixed at the tip of 0.4 mm—diameter capillary that is vertically
translated downwards at a constant velocity. The bottom view is captured by a high-speed color camera (SA2, Photron Inc.).
The camera is connected to a long working-distance microscope and a 5� objective to obtain a 2 mm field of view. (c) An example of
an interference pattern and the extracted air thickness profile. Note the difference in horizontal and vertical length scales. The exposure
time was 1=15 000 s and the typical frame rate of the recordings is 5000 frames per second.
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by using the BI method; the simulations are based on the
numerical code described in Refs. [15–17]. This BI simu-
lation is an alternative way of solving the system of equa-
tions, compared to themethod applied in Ref. [11], inwhich
case a Hilbert transform method was applied. In contrast
to Ref. [14], we do not solve the complete Navier–Stokes
equations, but do include dynamics of the air layer below
the drop. The dynamic boundary condition on the droplet
contours is given by the unsteady Bernoulli equation,

�
@�

@t
þ 1

2
jr�j2

�
¼�gz� �

�l

�ðr; tÞ�Pgðr; tÞ�P1
�l

: (2)

Here, t is time, g the acceleration of gravity, z the absolute
height, �ðr; tÞ the interface curvature, and P1 the far-field
pressure. The key dynamical quantities in Eq. (2) are the
gas pressure Pgðr; tÞ and the interface curvature �ðr; tÞ.
The curvature is related to the dimple profile Hðr; tÞ by
the geometric relation
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To close the problem, an additional equation is provided by
the lubrication approximation for the viscous gas flow at the
bottom of the droplet,
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@t

� 1

r

@

@r

�
rðHðr; tÞÞ3

12�g

@Pgðr; tÞ
@r

�
¼ 0; (4)

with boundary condition Pgjr¼R ¼ P1; the gas pressure at
the top of the droplet is set to atmospheric. Contrarily to
Ref. [11], we do not incorporate effects of compressibility
of the gas, since, following the analysis of Ref. [13], there
is little influence of compressibility in the regime that is
studied here. The initial conditions for the simulations
consist of a spherical droplet with radius R with a down-
ward velocity U. The initial height is taken sufficiently
high for the pressure induced by the radial velocity profile
to be still negligible as compared to the ambient pressure
(� 10 �m). The number of nodes on the droplet surface
for which the BI equations are solved is of order 100, with
node density increasing for r ! 0. The number of nodes
and the size of the time steps vary during the simulation, as a
function of the local gap height and velocity of the droplet
contour. The size of a time step is of order 10 ns. For any
number of nodes, the coupling between gap height and
pressure profile breaks down for some small value of H,
since the pressure diverges at vanishing thickness of the air
layer. Consistent with the experimental resolution, we con-
tinue our simulations until the minimum gap thickness
reaches 0:4 �m, while ensuring that our algorithm remains
accurate. This is the moment at which the values forHd and
Vb are extracted, which, however, have already achieved
their final value much earlier, as shown in the Supplemental
Material [18].

The results of the numerical calculations are shown in
Fig. 2, together with the experimental data, showing very
good agreement with our experimental results: in particu-
lar, we observe the pronounced maxima in the dimple size
and in the entrained bubble volume at the optimal Stokes
number Sto. In the numerically obtained bubble volume,
we observe a jump exactly at the crossover regime. This
jump originates from a change in the shape of the dimple.
Figure 3 compares the experimental and numerical dimple
profiles for an impact velocity at the crossover regime
(U ¼ 0:2 m=s) and an impact velocity in the inertial
regime (U ¼ 0:7 m=s). While the profiles are in excellent
agreement in the inertial regime (both volume and dimple
height), the numerical profile develops a ‘‘double dimple’’
at the lower impact speed. This variation in shape results in
the jump observed for the numerical bubble volumes in the
crossover regime [see Fig. 2(b)]. In all cases, however, the
dimple height Hd is in quantitative agreement without any
adjustable parameters.
Numerical and experimental results together suggest a

scaling Hd=R�St�2=3 for larger Stokes numbers, while

Hd=R� St1=2 for smaller Stokes numbers. We will now
theoretically derive these scaling laws. For large St, we
follow and extend Refs. [6,12,19]: The horizontal length
scale L of the dimple extension [see Fig. 1(a)] follows
from geometrical arguments as L� ffiffiffiffiffiffiffiffiffiffi

HdR
p

, and ur from
mass conservation as ur�UL=Hd. The Stokes Eq. (1)
suggestsPg � L�gur=H

2
d as an estimate for the gas pressure

below the falling drop at touch-down. The liquid pressure Pl

can be estimated from the unsteady Bernoulli equation:
dimensional analysis gives the deceleration time scale
Hd=U and the potential in the liquid �UL, resulting in
Pl � �lU

2L=Hd. Since the liquid drop will be deformed
when Pg � Pl, one finally obtains the scaling for the dimple

height and the bubble volume:
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FIG. 3 (color online). Comparison of experimental (blue,
solid) and numerical (red, dashed) dimple profiles for two differ-
ent impact velocities; U ¼ 0:2 m=s (St ¼ 7:8 � 103; crossover
regime) and U ¼ 0:7 m=s (St ¼ 2:7 � 104; inertial regime).
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Hd � RSt�2=3; Vb � L2Hd � R3St�4=3: (5)

This describes the air bubble in the inertial regime, i.e., large
impact velocities, in agreement with our experimental and
numerical findings.

For small St, corresponding to small impact velocity and
small droplet radius, capillarity will take over and tries to
smoothen the dimple out. Then the pressure inside the gas
must be balanced with the Laplace pressure ��. Under
the assumption that the horizontal length again scales as
L� ffiffiffiffiffiffiffiffiffiffi

HdR
p

, the dimple curvature ��Hd=L
2. Using once

more that the gas pressure Pg � L�gur=H
2
d, one immedi-

ately obtains

Hd

R
� ffiffiffiffiffiffi

Ca
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

We=St
p � �gffiffiffiffiffiffiffiffiffiffiffiffi

��lR
p St1=2;

Vb

R3
� �2

g

��lR
St; (6)

as scaling in the capillary regime. Again, this agrees well
with the experimental and numerical findings. The cross-
over between the regimes, determined by the maximum
dimple height, occurs at

Sto � Ca�3=4
o or Uo � �1=7

g �3=7

�4=7
l R4=7

: (7)

Using prefactors obtained from our experimental data in
Fig. 2, for an ethanol droplet of 0.9 mm radius, this trans-
lates to an impact velocity Uo ¼ 0:25 m=s. What is the
physical reason for the maximum? For higher velocities,
inertia dominates and flattens the droplet at impact. For
lower velocities and/or smaller droplets, the capillary
forces try to keep the drop spherical. In between these
two regimes, the maximal air entrainment under the droplet
is achieved.

For many applications, air entrainment is undesirable
and maximal wetting must be achieved. This holds for
immersion lithography, wafer drying, glueing, and agricul-
tural applications [20,21]. Intriguingly, for inkjet drops
of radius R� 10 �m, the optimal velocity according to
Eq. (7) is approximately 1 m=s. This lies exactly in the
range at which inkjet usually operates (typically a fewm=s),
and relatively large bubbles will, thus, be entrapped [1].
For immersion lithography, the entrapment of evenmicron-
sized bubbles can cause practical limitations [20,21]. This
technology is based on optical imaging of nanoscale struc-
tures, for which the optics is immersed in water to push the
limits of spatial resolution. Clearly, it is crucial to avoid
bubbles or to minimize their size, which also has bearing in

cleaning and drying of wafers. Ideally, one should stay as
far as possible from the optimal air entrainment impact
velocity. Our findings will help to achieve this goal and
thus, optimal wetting.
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