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The accurate characterization of eigenmodes and eigenfrequencies of two-dimensional ion crystals
provides the foundation for the use of such structures for quantum simulation purposes. We present a
combined experimental and theoretical study of two-dimensional ion crystals. We demonstrate that
standard pseudopotential theory accurately predicts the positions of the ions and the location of structural
transitions between different crystal configurations. However, pseudopotential theory is insufficient to
determine eigenfrequencies of the two-dimensional ion crystals accurately but shows significant devia-
tions from the experimental data obtained from resolved sideband spectroscopy. Agreement at the level of
2.5 X 1073 is found with the full time-dependent Coulomb theory using the Floquet-Lyapunov approach
and the effect is understood from the dynamics of two-dimensional ion crystals in the Paul trap. The
results represent initial steps towards an exploitation of these structures for quantum simulation schemes.
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Accurate control of ion crystals is of major importance
for spectroscopy, quantum simulation, or quantum comput-
ing with such experimental platform. Since the invention of
dynamical trapping by Paul [1], this versatile instrument
has been adapted and optimized for specific purposes.
Charged particles, more specifically singly charged ions,
are confined in a radio frequency (rf) potential, which is
formed by tailored electrode structures. In the case of
the linear Paul trap, one aims for a quadrupole field
along one z axis, such that a harmonic pseudopotential in
x and y direction is formed. This radial potential strongly
confines the ions, while an additional weaker axial poten-
tial in z direction is generated with static (dc) voltages
applied to end cap electrodes. Trapped ions are cooled
by laser radiation [2] in the potential described by three
trap frequencies w eventually forming a crystalized
structure.

The conditions of operation are characterized by two
anisotropy parameters where the radial confinement w, ,
typically exceeds the axial dc confinement w,. For suffi-
ciently small values of a(, ,) = w2/ w(zx,y), the ion crystal is

linear and aligned along the weakest axis, the z trap axis;
all ions are placed in the node of the rf potential.
Spectacular highlights using linear crystals of cold ions
are the demonstration of quantum logic operations [3,4],
the generation of entangled states [5,6], sympathetic cool-
ing of ions of different species [7,8], or the quantum-logic
clock [9]. To reach the level of quantum control, as
required in the experiments listed above, the first precon-
dition was a complete understanding of eigenmodes
and eigenfrequencies for such stored linear ion crystals
[10-12].
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For larger numbers of ions, or for larger values of «, the
linear crystal undergoes a transition to a zigzag structure
and eventually to a fully crystalline two- or three-
dimensional structure [13,14]. Especially interesting are
planar ion crystals, where usually one of the confining
radial potentials is much tighter than the axial one, as
such structures with nondegenerate radial frequencies do
not rotate [15,16] and allow to address and observe indi-
vidual ions. Recent proposals have outlined how to achieve
laser-induced spin-spin interactions on such 2D ion crys-
tals and how to use their spatial arrangement for the
realization of spin lattices exhibiting frustration [17,18].
It was also proposed how to study the spin-phonon inter-
actions coupling the geometric structure of the ion chain to
the spin-spin interaction of the chain to realize a Peierls
instability [19] or the Jahn-Teller quantum phase transition
[20,21]. Topological defects in the zigzag configuration
were proposed for simulation of quantum effects with
solitons [22]. It was also proposed that the dynamics of
the structural transition from linear to zigzag configuration
may be induced by electronic excitations or a fast change
of the trap parameters [23-26] and it would allow for the
verification of the predicted scaling laws for defect forma-
tion when traversing the transition, that is the Kibble-Zurek
mechanism [27,28]. Furthermore, the double well structure
realized by the two different configurations of the zigzag
ion crystals can be manipulated and may, thus, allow for
the creation of a coherent superposition between these two
configurations and hence, serve as a test bed for decoher-
ence models [23,29].

Spectroscopy and quantum simulation experiments with
planar ion crystals in Penning traps have recently been
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reported [30,31]. However, no experiments have been suc-
cessful in using planar crystals in a Paul trap. This is due to
the high complexity of controlling such crystalline two-
dimensional structures. Required is the knowledge of
eigenmodes and eigenfrequencies of such crystals, since
it is important for the cooling and for the design of ion-ion
interactions which rely on the setting of laser parameters.
These are tailored to induce spin-dependent light forces via
Stark effects [30,32,33].

Here, we present a combined experimental and theoreti-
cal study of eigenmodes of ions in planar crystals. We
describe an accurate experimental determination of posi-
tions of ions and the frequencies of the eigenmodes of the
crystal structures together with a comparison of these data
with theoretical expectations based on pseudopotential
approximation (PPT) and a full dynamical classical theory
for solving the linearized Coulomb problem in ion crystals
using a Floquet-Lyapunov approach (FLT) [34,35]. From
observations of multiple sequential phase transitions
between different structures of the ion crystal, we map out
the phase diagram and find good agreement with theoreti-
cal predictions following PPT for both the transition points
and for the positions of individual ions in the different
phases. The measurement of the eigenfrequencies relies
on sideband spectroscopy and is applied here to the vibra-
tional frequencies of a three-ion zigzag crystal. Surprisingly,
some modes exhibit a significant 37 kHz deviation when
compared to calculations in PPT. We can understand the
measured data quantitatively only if the full time-dependent
solution of the trapping potential is taken into account, with
the eigenfrequencies calculated using FLT.

The positions of the ions in a crystal are determined by
the mutual Coulomb repulsion together with a static elec-
tric potential in the z direction and a dynamic radial
trapping potential. A single charged particle in the time-
dependent potential of a quadrupole Paul trap, or the
center-of-mass (c.m.) modes of a general crystal of ions,
obey decoupled, linear Mathieu equations of motion in
each spatial direction [36]. The rf and dc trap voltages,
together with the rf-frequency () and the mass of the ions
m, determine the dimension-free Mathieu parameters in
each direction of space i € {x, y, z} as a; = 4eU,./y,;mQ?
and ¢; = 2eU,;/y'imQ?, where y; and vy} are geometrical
factors denoting the curvature of the respective potentials
and ¢ = Qr/2. The Mathieu equation is solved

2
Z—f}z} + [a — 2g cos(2€)]y = 0. (1)
One derives stable solutions with characteristic exponents

Bi = ‘/ a; + g?/2, and obtains a harmonic time-independent
pseudopotential with frequencies w; = 8,;(2/2.

In the pseudopotential approximation, the ions arrange
in positions corresponding to a stable minimum of the
time-independent potential, the determination of which
follows the method for linear crystals [10], extending it

to three dimensions. In the time-dependent potential, the
equivalent of a minimum configuration crystal is a periodic
solution with the ions oscillating at the rf-frequency (2,
about well-defined average locations (the oscillation
denoted as micromotion). The ion coordinates in the radial
direction obey

() = yn[l -2 cos(ﬂt)] + 0(";) @)

while in the axial z direction, the micromotion is negligible
[34].

In the experiment, the resonance fluorescence of
Doppler cooled °Ca™ ion crystals near 397 nm is imaged
on a CCD camera [37]. We use a linear Paul trap consisting
of four cylindrical rods (2X rf and 2X dc, of diameter
2.5 mm and at diagonal distance between centers of
4.7 mm), and two end caps at 10 mm distance. Note that
the degeneracy of the radial modes is lifted using a dc
offset voltage of about 0.5 V. We operate with a rf-
amplitude of Uy ~ 300 V,, at Q/(27) = 14.62 MHz
and end cap voltages of 350 V, yielding secular frequencies
w,,./(2m) = (316,111) kHz and a much larger w,. All
secular frequencies are determined from the resonant elec-
tric excitation of the c.m. modes [38].

Equilibrium positions.—Are determined from CCD im-
ages such as shown in Fig. 1 with a 7-ion crystal.
Averaging over 100 exposures and applying a Gaussian
fit to the data, we determine the ion locations, see Fig. 1(b).
As the planar crystal is observed at an angle of 45°, the y
axis is compressed by V2. The magnification of the imag-
ing system is determined from the c.m. mode frequency in
z direction and the z distance in a linear two-ion crystal.

The observed fluorescence precisely indicates the ion
positions. The measured data show perfect agreement with
the theoretical expectations following PPT at the level of a
few parts in 10%, see Fig. 1(c), for a crystal of 7 ions, and
similar agreement is found for crystals with 6 to 17 ions.
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FIG. 1 (color online). Determination of ion positions in planar
crystals: (a) The ion fluorescence near 397 nm is imaged on a
CCD chip. (b) The ion positions (black dots) are determined by
averaging over 100 exposures and compared with the result of a
numerical simulation assuming Coulomb repulsion in a har-
monic trap pseudopotential (red crosses). The experimental
data allow for a precision of 50 nm as indicated by the circle
for a 1o standard deviation.
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FIG. 2 (color online). Phase transitions for a three-ion (black)
and a four-ion (red) crystal. Theoretical (PPT) critical a’s are
indicated by vertical dashed lines with the corresponding crystal
configurations. Experimental data are plotted at those o where a
certain configuration is observed, with an error of 0.05 in «. For
an ion crystal with an even number of ions (here, N = 4), ay,,, is
the relevant parameter, where the structure symmetry changes.
The measurements are taken in a linear micro trap with
Q/(@2m) =22.7MHz, U;~300V,, yielding frequencies
wyy, 3/ (27r) = (0.421, 0.626) MHz and a much larger w,. Inset:
Table of calculated critical «.

Structural phase transitions.—Are induced when the
value of « is varied. While so far the first linear-to-zigzag
transition was investigated [39], we observe multiple con-
secutive critical a, see Fig. 2. The experimentally deter-
mined positions and the critical values of « agree with the
prediction of PPT. Comparing the PPT prediction and the
solution of the full time-dependent equations, with g <
0.1, the relative differences for critical o are only about
1%, not resolved in the experimental data.

Normal mode frequencies.—Result from the Coulomb
forces between ions at their equilibrium positions. For the
calculation in PPT, these forces are expanded in small
excursions about the equilibrium positions, linearized, and
the Hessian matrix is solved. Laser spectroscopy provides a
precise tool to determine eigenfrequencies with a relative
accuracy of 0.2 percent or better, and we do not find agree-
ment between the measurements and the PPT calculation.
The corresponding values for mode frequencies for the
three-ion crystal under study, in a zigzag configuration with
a =~ 0.53, are in Table I. Only recently, the influence of
micromotion on the frequencies of secular modes has been
investigated theoretically, which results in significant correc-
tions as compared to PPT, even for relatively small g values.

Table I displays the resulting frequencies of the zz
modes. Experimental uncertainties result from fluctuations
of the trap control voltages, drifts of the laser reference
cavity, or magnetic field noise during the scan. We obtain
the errors from a statistics of a comparison of red and blue
sideband frequencies in many scans like that plotted in
Fig. 3, obtained on the same day and under identical
conditions as the data. The PPT prediction for the zz

TABLE I. Frequencies of a three-ion zigzag crystal in units of
kHz/(27).

Wzz(b) W72(a) W, Wy
Exp. 714(2) 1078(2) 1238(2) 1695(3)
PPT 730(14) 1041(12)
FLT 715.1 1078.5 1239.5 1690.7

frequencies is calculated based on the experimental data
for the w_, which are c.m. modes (whose frequencies are
the same in PPT approximation and full dynamic theory).
Systematic errors, including the ac Stark effect <1 kHz,
are contained in the error budget. From the z and y mode
frequencies, we first determine the ion positions in the
pseudopotential and then the zz mode frequencies.
Experimental uncertainties in @, and , lead to uncertain-
ties for the PPT zigzag mode frequency prediction of 14
and 12 kHz, respectively. Theory values for FLT are
obtained as a best fit to all experimentally determined
frequencies [41].

The breakdown of PPT results from the fast oscillations
of ions about their equilibrium positions at the rf-
frequency, as in Eq. (2), which modifies periodically the
Coulomb forces between ions. Thus, it is not justified to
assume static positions for the Hessian matrix. The forces
between the ions can be expanded in a Fourier series, and
the resulting equations can be solved in terms of decoupled
modes [34], which describe oscillations with secular fre-
quencies, superimposed on micromotion at the rf-
frequency. This effect resembles the Lamb shift where
the Zitterbewegung of the bound electron leads to a modi-
fication in the hydrogen energy levels [40]. A short
description of the method of solution, together with code
for the calculations presented in this Letter, is available in
the Supplemental Material [41].

We test the FLT prediction experimentally using a three-
ion crystal and performing resolved sideband spectroscopy
on the narrow S/, to D5/, transition near 729 nm. In the
spectrum (Fig. 3), we identify the vibrational frequencies
of a three-ion zigzag crystal. When testing PPT, we use the
c.m. modes in axial and radial y direction to generate
predictions for the zigzag frequencies, which deviate
from the experimental values by 37 and 15 kHz, respec-
tively. For FLT, we fit the five measurements of the three
c.m. modes and the two lowest planar zigzag modes using a
weighted-least-squares fit, with three parameters g, a,,
and a, (imposing a, = —a, — a, as required from the
Laplace equation). The weighted-least-squares fit norm is
a random variable distributed like x> with two degrees of
freedom, see Ref. [41]. The theoretical values coincide
exactly with both the eigenfrequencies, fitting the data
with about 22% probability with all the eigenfrequencies.
A similar fitting procedure for the PPT results in a negli-
gible probability of the order 10~!!, reflecting that PPT
frequencies do not agree with the experimental finding.
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FIG. 3 (color online). Spectrum of vibrational modes in a three-
ion crystal. The excitation from the S, , to D5/, state is plotted as
the laser frequency near 729 nm is scanned over the resonance
between a frequency detuning of =2 MHz. We observe excitation
at the frequencies of red and blue motional sidebands, symmet-
rical around the carrier. The spectrum is plotted versus the modu-
lus of frequency detuning, such that red and blue sidebands fall
on each other. Measurements are taken in a linear micro trap
with Q/(27) = 35.07 MHz and U,~420V,, yielding fre-
quencies wy,y,3/(27) = {2940(10), 1695(3), 1238(2)} kHz. We
identify zigzag modes near (a) 1078(2) kHz and (b) 0.714
(2) kHz. The blue dashed lines indicate the expected frequencies
for zigzag modes from PPT, while the black dashed-dotted
lines show the outcome of the calculation of FLT. Insets display
eigenvectors of zigzag modes (a) and (b). The other reso-
nances correspond to mixing frequencies of two normal mode
frequencies.

The strong influence of the trap drive on the eigenfre-
quencies of zigzag modes is further explained by a theo-
retical analysis, where the Mathieu parameter ¢ is varied
and the variation of the mode frequencies zz(a) and zz(b) is
plotted, see Fig. 4. In the experiment, the g value is fixed
and can not varied easily over a large range. The data
points, near ¢ = 0.2, for the zz(a) and zz(b) mode, hit
the FLT prediction and exclude the PPT frequencies. The
fractional frequency shift reaches, for high g values, a level
of up to 20%. Examining Fig. 3(a), it is understandable
why the zz(a) mode is affected the most by the micro-
motion, and why its frequency increases monotonically
with ¢g. It can be seen from Eq. (2) that the micromotion
amplitude of each ion is proportional to the negative of its y
equilibrium position, so that this motion has a large projection
on the eigenvector of the zz(a) mode. At each point along the
periodic trajectory, the restoring forces are larger for this
mode than at the center, and thus, its frequency increases
with the amplitude of the micromotion, hence, with g.

Conclusion.—We calculated and characterized experi-
mentally the behavior of two-dimensional crystals under
the influence of micromotion. We show that while the
pseudopotential theory fails to explain the experimental
results to an accuracy within 3o-deviation, the newly
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FIG. 4 (color online). The calculated eigenfrequencies for the
zigzag modes (a) and (b) in a three-ion crystal plotted versus the
Mathieu parameter ¢, with a parameters adjusted such that
the c.m. frequencies are constant. The zz eigenfrequencies show
a slope with g. The dashed line results from the PPT, see Table I,
including the prediction error (grey shaded). Experimental data
point fits the theoretical FLT expectation near g =~ 0.2, where
Q/(277) equals 35.07 MHz. Inset: with zoomed part showing the
fit of the FLT and the 30 deviation of data against PPT.

established method predicts the experimental finding cor-
rectly. We could show that FLT provides an experimentally
verified tool for understanding the static and dynamic
properties of mesoscopic Coulomb crystals and might
prove to be a key ingredient for establishing these systems
as a new experimental platform. The presented results are
an essential prerequisite for the success of quantum simu-
lation in two-dimensions where the effective Hamiltonian
depends on the crystal frequencies of all normal modes in
the presence of micromotion.

It is important to note that micromotion is a driven
motion with a well-defined phase: Therefore, it does not
delocalize the ion wave packet, leading to a larger effective
Lamb Dicke parameter. The micromotion merely acts as to
affect the strength of atom-laser interactions via phase
modulation. It does not prevent from exploiting spin de-
pendent forces for quantum simulation schemes.

Based on our results, a theory could be constructed that
takes into account such effects in the effective Hamiltonian.
Moreover, the precise knowledge of the behavior of the
crystal under the influence of micromotion is crucial for
quantum-to-classical simulation experiments that use such
transitions in condensed matter or high energy effects, such
as the Kibble Zurek mechanism. The deviation of critical «
values from the pseudopotential predictions is expected to
be larger for larger values of g and merits further experi-
mental and theoretical investigation.
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