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Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied

forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that

completely neglecting inertia—the overdamped approximation—gives an excellent effective description

of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped

approximation dramatically fails when thermodynamic quantities such as the entropy production in the

environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet

finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e.,

has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic

anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit.

Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast

downgradient sweep followed by a slow upgradient return to the original position.

DOI: 10.1103/PhysRevLett.109.260603 PACS numbers: 05.70.Ln, 05.40.�a

Life at the microscale flows under one law: The fluid
gives, and the fluid takes away. This arbitrary tyrant
lavishly bestows energy to suspended particles through
molecular collisions while incessantly draining it from
them through friction. The result is the erratic movement
of microscopic particles that goes under the name of
Brownian motion.

The theory of Brownian motion was developed by
Einstein, Smoluchowski, and Langevin a little over a cen-
tury ago [1]. A central result of this theory is the over-
damped approximation that says that inertia can be ignored
if mass is small or if friction is large. The motion of a
Brownian particle, which obeys Newtonian mechanics and
is driven by collisions and external forces, is thus reduced
to a first-order diffusion equation. The overdamped ap-
proximation successfully describes the mechanics on the
microscale and is very widely used [2,3].

With the advent of micromanipulation, it has become
possible to measure and control the positions of indivi-
dual Brownian particles and other small systems [4–7].
Thermodynamic concepts such as heat, work, and entropy
production have hence taken a meaning for single systems
[8,9]. These developments are the foundation of the new
emerging field of stochastic thermodynamics, where the
most striking results obtained to date are fluctuation rela-
tions, recently reviewed in, e.g., Refs. [10–12]. Here, we
show that in this setting the overdamped approximation
fails, as soon as the temperature field varies in space.

Indeed, although the overdamped approximation cor-
rectly yields the trajectories of the Brownian particles in
space, it incorrectly estimates the entropy production. This
failure is traced back to seemingly innocent corrections
that, while having a negligible impact on trajectories,
eventually dominate the entropy production in the long
run, even in the limit when inertial effects go to zero.
As a result, fluctuation relations themselves take a very
nontrivial form in the limit of small yet finite inertia.
We dub this phenomenon entropic anomaly, in analogy

with similar anomalies encountered in physics. The best
known example in classical physics is the viscous dissi-
pative anomaly. The energy dissipation in a fluid flow
remains finite even in the limit of arbitrarily small viscos-
ity, whereas it vanishes when viscosity is exactly zero [13].
The viscous anomaly reflects the loss of time-reversal
symmetry of fluid dynamics when going from the inviscid
case to the viscous one. Quantum anomalies arise when a
current conserved at the classical level (Planck’s constant
set to zero) is not conserved anymore at the quantum level
(see, e.g., Ref. [14] for a general discussion and Ref. [15]
for a simple example from molecular physics). We show
here that the entropic anomaly is associated with the break-
ing of a symmetry of the zero-inertia overdamped dynam-
ics, when small finite inertia is considered. The symmetry
is the joint reversal of time and particle velocity.
To illustrate our result, let us focus on a minimal thought

experiment. A microscopic particle is suspended in a fluid
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inside a vessel with reflecting walls. The two opposite sides
of the vessel are in contact with heat reservoirs at different
temperatures. The fluid is motionless and displays by a
static smooth temperature profile TðxÞ (e.g., a linear one).
For the sake of simplicity, no external force is applied to
the particle and the friction coefficient is taken independent
of particle position. We emphasize that the assumptions on
temperature profiles, friction coefficients, and absence of
external forces are not restrictive and refer readers to the
discussion below and to the Supplemental Material [16] for
a general discussion.

The motion of the suspended particle is then governed
by the Langevin-Kramers equations for position Xt and
velocity Vt [17]

_X t ¼ Vt; _Vt ¼ ��Vt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TðXtÞ�

q
�t; (1)

where �t is a Gaussian zero-mean white noise, i.e.,

h�i
t�

j
t0 i ¼ �ij�ðt� t0Þ.

The heat released by the particle to the fluid along a
trajectory from time t0 to time t reads Q ¼ �jVtj2=2þ
jVt0 j2=2. In the case at hand, since there is no force, no
work is done on the particle and no potential energy is
stored [18]. The entropy of the particle is defined as the
state function

Spðx;v; tÞ ¼ � lnpðx;v; tÞ; (2)

where p is the probability density of the particle position
and velocity at time t [8]. In other words, p is the solution
of the Fokker-Planck equation associated with Eq. (1).
The entropy produced by the particle in the environment
(the fluid) along a path is the integral of the released heat
divided by temperature

Senv ¼ �
Z t

t0

1

TðX�ÞV� � _V�d�; (3)

where � denotes the Stratonovich product (the integral is
regularized according to the midpoint rule). The total
entropy produced along the process is therefore

Stot ¼ SpðXt;Vt; tÞ � SpðXt0 ;Vt0 ; t
0Þ þ Senv (4)

and is positive on average, as prescribed by the second law
of thermodynamics [19,20].

We now turn our attention to the overdamped dynamics.
It is possible to prove by means of asymptotic techniques
(see Refs. [9,22,23] and the Supplemental Material [16])
that the the spatial trajectory Xt in (1) tends—in the limit
of small inertia and in the probabilistic sense—to the
solution of

_X t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TðXtÞ=�

q
�t: (5)

The correct interpretation of the equation above is that the
product on the right-hand side has to be taken with the Itō,
nonanticipative convention. The velocity follows the local

Maxwell-Boltzmann distribution wðvjxÞ ¼ ½2�TðxÞ��3=2

expf�jvj2=½2TðxÞ�g.

The Fokker-Planck equation associated with Eq. (5) can
be interpreted as the mass-conservation equation for a
dilute colloidal suspension of noninteracting particles.
The flux of particles is J ¼ �T��1r�� ��1�rT and
features the contributions of the osmotic force �Tr ln�
and of the thermophoretic force �rT. For times larger
than L2�=T, where L is the size of the vessel that encloses
the fluid, the probability density of the particle position
reaches the equilibrium �eq / T�1 with a zero-flux balance

of osmotic and thermophoretic forces.
Stochastic thermodynamics can be formulated for the

overdamped dynamics (5). The particle entropy is

SðoverÞp ¼ � ln�ðx; tÞ; (6)

where � solves the Fokker-Planck equation associated
with Eq. (5). When the particle moves from a region
where the probability density � is high to one where it
is low, its entropy increases. The entropy produced in the
environment is the work done by the thermophoretic
force on the particle along a trajectory, divided by
temperature

SðoverÞenv ¼ �
Z t

t0

rTðX�Þ
TðX�Þ � _X�d� ¼ ln

�
TðXt0 Þ
TðXtÞ

�
; (7)

and it is positive when the particle moves from a hot
region into a cold one. When the system reaches equi-
librium, the total entropy production

SðoverÞtot ¼ SðoverÞp ðXt; tÞ � SðoverÞp ðXt0 ; t
0Þ þ SðoverÞenv (8)

tends to zero along any trajectory since these two contri-
butions compensate exactly. The average rate of entropy
production is

d

dt
hSðoverÞtot i ¼

Z jrð�TÞj2
��T

dx � 0; (9)

where the integral is over the volume of the vessel.
It vanishes in equilibrium since �T is then a constant.
This result coincides with the expression obtained by
macroscopic nonequilibrium thermodynamics for the en-
tropy production by a dilute particle suspension [21].
We now move to the description of the results of the

present work, where the limit of small yet finite inertia is
considered. The derivations follow standard asymptotic
expansion methods and are detailed in the Supplemental
Material [16]. The only assumption is that the length scale
of variation of the temperature be larger than the typical dist-
ance traveled during the friction time ��1; i.e., the gradients

must not be exceedingly large jrTj � T�=v� �T1=2 [24].
The average rate of entropy production of the Langevin-

Kramers process (1), in the limit of vanishing inertia, is

d

dt
hStoti ¼ d

dt
hSðoverÞtot i þ 5

6

�
T

�

�rT
T

�
2
�
: (10)

This exact asymptotic expression has to be contrasted
with the overdamped approximation (9). It differs by an
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additional positive contribution that actually controls the

asymptotic rate of entropy production since dhSðoverÞtot i=dt
vanishes as equilibrium is approached. This is the most
conspicuous effect of the entropic anomaly.

It is indeed possible to isolate the source of the anomaly
from the total entropy production (4), Stot ¼ Sreg þ Sanom,

where

Sanom ¼
Z t

t0

½5TðX�Þ � jV�j2�
2TðX�Þ2

V� � rTðX�Þd�; (11)

and to show that it arises from the Senv contribution. The
remainder Sreg has a regular limit and tends to the over-

damped entropy (8). In the limit of small inertia, the
anomalous entropy obeys the identity

hexpð�SanomÞi ¼ 1; (12)

and its average rate of production is

d

dt
hSanomi ¼ 5

6

Z
�
ðrTÞ2
�T

dx; (13)

which gives the rightmost term in (10). It is worth pointing
out that the anomalous contribution cannot be eliminated
by a suitable redefinition of the overdamped entropy.
Indeed, no sequential functional of the trajectories (5)
exists that gives the correct limiting statistics of Sanom
(see the Supplemental Material [16]).

What is the interpretation of the anomaly? Entropy is a
measure of irreversibility. It is possible to show in very
general terms that the entropy produced in the environment
along a trajectory quantifies the probability of the reversed
path relative to the forward one (see Ref. [19] for a precise
statement for diffusion processes). In the Langevin-
Kramers case, the reversal consists in the inversion of the
arrow of time and of the direction of velocity (see Fig. 1)
and one has

PðX½t;t0�;�V½t;t0�Þ
PðX½t0;t�;V½t0;t�Þ ¼ expð�SenvÞ:

Similarly, for the overdamped dynamics,

PðoverÞðX½t;t0�Þ
PðoverÞðX½t0;t�Þ

¼ expð�SðoverÞenv Þ:

From the ratio of these two identities, it follows that, in the
limit of vanishing inertia, the anomalous entropy gives the
relative weight of conditional probabilities

Pð�V½t;t0�jX½t;t0�Þ
PðV½t0;t�jX½t0;t�Þ ¼ expð�SanomÞ: (14)

This result shows that the anomaly emerges from the
breaking of time- and velocity-reversal symmetry at a
given spatial position.

The anomaly can be traced back to the deviation of the
velocity distribution from the Maxwell-Boltzmann one,
wðvjxÞ. At equilibrium, the velocity statistics is indeed
given by

pðvjxÞ ¼ wðvjxÞ
�
1þ ½5TðxÞ � jvj2�

6�TðxÞ2 v � rTðxÞ
�
; (15)

except for terms of order ��2 or higher. This deviation,
albeit small, plays a crucial role as it breaks the velocity-
reversal symmetry along the temperature gradient direction
and is therefore responsible for the anomalous entropy
production.
Further insight on the interpretation of the anomalous

entropy can be gained by the following argument (see
Fig. 1). At the microscopic level (scales of order of

T1=2=�, times of order 1=�), the particle trajectory often
‘‘goes around in circles.’’ Indeed, as seen from Eq. (15),
the trajectories with higher probability (positive sign of
the correction term) are characterized by a downgradient
sweep with speeds larger than the thermal velocity, fol-
lowed by a slow upgradient motion (solid red trajectory
in Fig. 1). Note that the correction does not contribute to
the spatial flux of particles, as can be directly checked by
multiplying by v and integrating over velocity. It does
not contribute to the mean kinetic heat exchange, either,
since it is odd in velocity coordinates. During this futile
cycling, however, heat is absorbed at higher temperatures
and released at smaller ones, thereby producing entropy.

FIG. 1 (color online). Anomalous entropy is produced during
futile cycles of fast downgradient sweeping and slow upgradient
climbing. Along a microscopic trajectory that starts and ends at
the same temperature (solid red line), the overdamped contribu-
tion to entropy vanishes according to Eq. (7). However, anoma-
lous entropy is produced because of heat absorption at higher
temperatures, followed by heat release at smaller ones. The
reversed cycle (dashed blue line) with negative anomalous
entropy production is much less likely to occur in agreement
with Eq. (14).
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In each cycle of duration ���1, the amount of entropy
produced is approximately given by the heat exchanged
�T times the difference of inverse temperatures at the

extremes of the trajectory �T�2jrTjðT1=2=�Þ. Reversed
cycles (such as the one depicted as a dashed blue line in
Fig. 1) give a similar contribution with opposite sign.
However, forward cycles are more likely with probability

�T�1=2jrTj=�, as follows from Eq. (15). This results in an
overall average entropy production rate ���1T�1jrTj2
that we recognize as the anomalous term in Eq. (10).

The present findings have a much broader range of
applicability than the simple example discussed here (see
the Supplemental Material [16]). The addition of potential
and nonconservative forces is straightforward since the
related heat, work, and entropy contributions all have
regular limits and are thus correctly described by the over-
damped dynamics. A position-dependent friction, which
may account for the temperature dependence of viscosity
or hydrodynamic effects due to the presence of material
boundaries, can also be included with minor changes.
Finally, it is also possible to consider time-dependent
temperature, friction, and forces, provided the variation is
not faster than the time scale of overdamped motion.
All these modifications do not alter our results. The inter-
pretation is left unchanged, as well.

In conclusion, we have shown that thermodynamics at
the microscale is intrinsically anomalous in the limit of
vanishingly small inertia. The anomaly arises from the
breaking of time-reversal symmetry that emerges when
the particle is subject to a temperature gradient. How
may the entropic anomaly impact observable phenomena?
The most conspicuous effect should be on the efficiency of
thermal stochastic engines in nonuniform temperature
environments. Indeed, the intrinsic irreversibility arising
from the anomalous contribution—which does not vanish
even for quasistatic transformations—should irremediably
hamper the ability of the engine of converting absorbed
heat into work. Recent advances in experimental tech-
niques of particle confinement, tracking, and heating might
pave the way toward an experimental measurement of this
effect [5–7].
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(Birkhäuser Verlag, Basel, 2006), p. 201.

[2] E.M. Purcell, Am. J. Phys. 45, 3 (1977).
[3] D. B. Dusenbery, Living at Micro Scale (Harvard

University, Cambridge, MA, 2009).
[4] F. Ritort, J. Phys. Condens. Matter 18, R531 (2006).
[5] T. Li, S. Kheifets, D. Medellin, and M.G. Raizen, Science

328, 1673 (2010).
[6] V. Blickle and C. Bechinger, Nat. Phys. 8, 143 (2011).
[7] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.

Dillenschneider, and E. Lutz, Nature (London) 483, 187
(2012).

[8] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[9] K. Sekimoto, Stochastic Energetics, Lecture Notes in

Physics Vol. 799 (Springer, Berlin, 2010).
[10] C. Jarzynski, Eur. Phys. J. B 64, 331 (2008).
[11] M. Esposito, U. Harbola, and S. Mukamel, Rev. Mod.

Phys. 81, 1665 (2009).
[12] C. Jarzynski, Annu. Rev. Condens. Matter Phys. 2, 329

(2011).
[13] U. Frisch, Turbulence (Cambridge University Press,

Cambridge, England, 1996).
[14] K. Fujikawa and H. Suzuki, Path Integrals and Quantum

Anomalies, International Series of Monographs on Physics
Vol. 122 (Oxford University, New York, 2004).

[15] H. E. Camblong, L. N. Epele, H. Fanchiotti, and C.A. G.
Canal, Phys. Rev. Lett. 87, 220402 (2001).

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.109.260603 for the
derivation of the result presented in the text.

[17] The general form of the Langevin-Kramers equation is _Xt ¼
Vt, m _Vt ¼ f � �vþ ffiffiffiffiffiffiffiffiffi

kT�
p

�t, where m is the particle
mass, f the applied force, and k the Boltzmann constant.
Equation (1) follows by reduction to nondimensional form
through the rescalings X ! X=L, V ! V=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0=m

p
, f !

f=ðkT0=LÞ, t ! t=ðL= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT0=m

p Þ, � ! �L=
ffiffiffiffiffiffiffiffiffiffiffiffi
kT0m

p
, T !

T=T0, where L is the characteristic length scale of the
problem and T0 is a reference temperature. The overdamped
approximation is obtained by setting the inverse of non-
dimensional friction to zero, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffi
kT0m

p
=ð�LÞ ¼ 0.

[18] Note that the heat released to the fluid does not alter the
temperature profile. This is because the thermal diffusivity
of water in standard conditions is six orders of magnitude
larger than the diffusion coefficient of typical Brownian
particles. The fluid recovers the steady state before the
particle has traveled any appreciable distance.
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