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A renormalization group approach is used to show that a one-dimensional system of bosons subject to a

lattice quench exhibits a finite-time dynamical phase transition where an order parameter within a light

cone increases as a nonanalytic function of time after a critical time. Such a transition is also found for a

simultaneous lattice and interaction quench where the effective scaling dimension of the lattice becomes

time dependent, crucially affecting the time evolution of the system. Explicit results are presented for the

time evolution of the boson interaction parameter and the order parameter for the dynamical transition as

well as for more general quenches.
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A fundamental and challenging topic of research is to
understand nonequilibrium strongly correlated systems in
general, and how phase transitions occur in such systems
in particular. While the theory of equilibrium phase tran-
sitions is well developed and relies heavily on the renor-
malization group, the development of an equally powerful
approach to studying nonequilibrium phase transitions is
still in its infancy. Moreover, in any progress on this topic,
it has always appeared that nonequilibrium phase transi-
tions have one aspect in common with their equilibrium
counterparts: Both occur by adiabatically tuning some
parameter of the system, in the absence or presence of an
external drive, and strictly speaking occur only in the limit
of infinite time (steady state) [1–8].

In contrast, here we study a completely different kind
of a nonequilibrium phase transition, one that occurs as a
function of time. Employing a time-dependent renormal-
ization group (RG) approach, we study the quench dyna-
mics of interacting one-dimensional (1D) bosons in a
commensurate lattice. This system in equilibrium shows
the Berezinskii-Kosterlitz-Thouless (BKT) transition sep-
arating a Mott insulating phase from a superfluid phase
(Fig. 1) [9]. For the nonequilibrium situation, we explicitly
show the appearance of a dynamical phase transition where
an order parameter grows as a nonanalytic function of time
after a critical time. Such a behavior has no analog in
equilibrium systems.

A dynamical transition in time was recently identified in
the exactly solvable transverse-field Ising model where the
Loschmidt echo was found to show nonanalytic behavior at
a critical time, whereas the behavior of the order parameter
was analytic [10]. In contrast, here we identify a situation
where the order parameter itself can show nonanalyticities
as a function of time. In addition, we generalize the study
of dynamical transitions to models that are not exactly
solvable and to low dimensions where strong fluctuations
negate a mean-field analysis [11].

We identify the dynamical transition by studying an
order parameter �ðr; TmÞ that due to the quench depends
both on position r and a time Tm after the quench. The
phase transition is associated with a nonanalytic behavior
as a function of time Tm on the value of this order parame-
ter spatially averaged within a light cone. Our results hold
relevance not only to experiments in cold-atomic gases
where system parameters can be tuned rapidly in time
[12], but also to conventional solid-state materials where
the time evolution of an order parameter may be probed
with high precision using ultrafast pump-probe [13] and
angle-resolved photoemission spectroscopy [14].
We model the 1D Bose gas as a Luttinger liquid, [9]

Hi ¼ u0
2�

Z
dx

�
K0½��ðxÞ�2 þ 1

K0

½@x�ðxÞ�2
�
; (1)

where �@x�=� represents the density of the Bose gas, �
is the variable canonically conjugate to�, K0 is the dimen-
sionless interaction parameter, and u0 is the velocity of the
sound modes. We assume that the bosons are initially in
the ground state of Hi. The system is driven out of equi-
librium via an interaction quench at t ¼ 0 from K0 ! K,
with a commensurate lattice Vsg also switched on suddenly,
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FIG. 1. The equilibrium BKT phase diagram. Arrows connect
the Hamiltonians before (Hi) and after (Hf) the quench. A

dynamical phase transition is found for case (d).
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at the same time as the quench. This triggers a nontrivial
time evolution from t > 0 due to a Hamiltonian
Hf ¼ Hf0 þ Vsg, where Hf0 ¼ HiðK0 ! KÞ and Vsg ¼
� gu

�2

R
dx cosð��Þ, with g > 0, and � ¼ u

� , a short-

distance cutoff. We assume that the quench preserves
Galilean invariance so that uK ¼ u0K0; however, this
is not critical for either the approach or the result. While
� ¼ 2 for bosons, we keep it general so that the results may
be generalized to other 1D systems.

In the absence of the lattice, the system is exactly

diagonalizable in terms of the density modes Hi ¼P
p�0u0jpj�y

p�p and Hf0 ¼ P
p�0ujpj�y

p�p, where �

and � are related by a canonical transformation. This
fact has been used to study the dynamics of a Luttinger
liquid exactly and has revealed interesting physics arising
from a lack of thermalization in the system [15–18]. To
study the system in the presence of the lattice employing
a RG, we write the Keldysh action representing the time
evolution from the initial pure state j�ii (hence an initial
density matrix � ¼ j�iih�ij) corresponding to the ground

state of Hi, ZK ¼ Tr½�ðtÞ� ¼ Tr½e�iHftj�iih�ijeiHft� ¼R
D½�cl; �q�eiðS0þSsgÞ. S0 is the quadratic part that

describes the nonequilibrium Luttinger liquid, which at a
time t after the quench is [19]

S0 ¼
Z 1

�1
dx1

Z 1

�1
dx2

Z t

0
dt1

Z t

0
dt2ð�clð1Þ �qð1Þ Þ

� 0 G�1
A ð1; 2Þ

G�1
R ð1; 2Þ �½G�1

R GKG
�1
A �ð1; 2Þ

 !
�clð2Þ
�qð2Þ

 !
;

(2)

where 1ð2Þ ¼ ðx1ð2Þ; t1ð2ÞÞ and �cl;q ¼ ����þffiffi
2

p , with the

minus (plus) sign representing a field that is
time (antitime) ordered on the Keldysh contour [20].
The lattice potential is given by Ssg ¼
gu
�2

R1
�1 dx1

R
t
0 dt1½cosf���ð1Þg � cosf��þð1Þg�.

We define an order parameter �m ¼ heim��clðx;tÞi such
that in equilibrium �m<1 is zero in the gapless phase and
nonzero in the gapped phase and such that �1, while
always nonzero, is a nonanalytic function of g. We will
show that after a quench �1 can be a nonanalytic function
of time. In order to understand the framework of the RG,

let us study the two-point correlation function Cabð1; 2Þ ¼
hei��að1Þe�i��bð2Þi (a, b ¼ �) for g ¼ 0 but for the
nonequilibrium Luttinger liquid (K0 � K). Denoting
1ð2Þ ¼ Rþ ð�Þ r2 , Tm þ ð�Þ �2 , Cab depends both on the

time difference � and on the mean time Tm after the quench
and is translationally invariant in space [19]. Cab depends

on three exponents: Keq ¼ �2K
4 , Kneq ¼ �2

8 K0ð1þ K2

K2
0

Þ,
Ktr ¼ �2

8 K0ð1� K2

K2
0

Þ. Consider Cab at equal time (� ¼ 0)

and at unequal positions. Then, for short times Tm� � 1
after the quench but long distances r � u=�, Cab decays

in position is a power law with the exponent Kneq þ Ktr ¼
�2K0=4 (i.e., Cab � r��2K0=4). Hence the short time behav-
ior is determined primarily by the initial wave function.
In contrast, at long times, Tm� � 1, Cab decays
as a power law but with a new exponent Kneq (i.e.,

Cab � r�Kneq). Ktr governs the transient behavior connect-
ing these limits. Further, at long times after the quench
Tm� � 1, Cab also becomes translationally invariant in
time (and hence independent of Tm).
The RG in equilibrium sums the leading logarithms. We

use the same philosophy to employ a RG to study dynam-
ics. In particular, at short times (but long distances), the RG

will resum the logarithms �2K0

4 lnjrj, whereas, at long times

(Tm� � 1), it will resum the logarithms Kneq ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� �Þ2p

.

Our approach generalizes the use of a RG to study quench
dynamics near classical critical points [21,22] to quantum
systems.
Derivation of RG equations.—We split the field �0;�

into slow (�<
0;��d�) and fast (�>

��d�;�) components in

momentum space �� ¼ �<� þ�>� and integrate out the
fast fields perturbatively in g. Following this, we rescale
the cutoff back to its original value and rescale position and

time R, Tm ! �
�0 ðR; TmÞ, where �0 ¼ �� d�. Following

this, we write the action as S ¼ S<0 þ S<sg þ 	S<0 þ
	S<Teff

þ 	S<� , where S<0 is simply the quadratic action

corresponding to H0f with the rescaled variables, S<sg is

the rescaled action due to the lattice, and 	S<0;Teff ;�
are

corrections to Oðg2Þ:

S<sg ¼ g

�
�

�0

�
2 Z 1

�1
dR

Z t�

0
dTm½cos��<�ðR; TmÞ

� cos��<þðR; TmÞ�e�ð�2=4Þh½�>
cl
ðTmÞ�2i; (3)

	S<0 ¼ g2�2

2

d�

�

Z 1

�1
dR

Z t�=
ffiffi
2

p

0
dTm½�IRðTmÞð@R�<

clÞ
� ð@R�<

q Þ � ItiðTmÞð@Tm
�<

clÞð@Tm
�<

q Þ�; (4)

	S<Teff
¼ ig2�2

2

d�

�

Z 1

�1
dR

Z t�=
ffiffi
2

p

0
dTmð�<

q Þ2ITeff
ðTmÞ;

(5)

	S<� ¼�g2�2

2

d�

�

Z 1

�1
dR

Z t�=
ffiffi
2

p

0
dTm�

<
q ½@Tm

�<
cl�I�ðTmÞ:

(6)

Equation (3) shows that the scaling dimension of the
lattice depends on h½�>

clðTmÞ�2i and in particular is time

dependent. To leading order (g ¼ 0), �2

4 h½�>
clðTmÞ�2i ¼

d�
� ½Kneq þ Ktr

1þð2Tm�Þ2�. 	S<0 shows that the quadratic part

of the action acquires corrections that are also time depen-
dent [19]. 	S<�;Teff

indicates the generation of new terms,
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such as a time-dependent dissipation (�) and a noise
(�Teff) whose physical meaning is the generation of
inelastic scattering processes that will eventually relax
the distribution function [5,6]. These time-dependent cor-
rections lead to RG equations that depend on time Tm after

the quench. Defining d�
� ¼ ���0

� ¼ d lnðlÞ, Iu;K ¼ IR � Iti
[19] and dimensionless variables Tm ! Tm�, � ! �=�,
Teff ! Teff=�, the RG equations are

dg

d lnl
¼ g

�
2�

�
Kneq þ Ktr

1þ 4T2
m

��
; (7)

dK�1

d lnl
¼ �g2�2

8
IKðTmÞ; (8)

dTm

d lnl
¼ �Tm; (9)

1

Ku

du

d lnl
¼ �g2�2

8
IuðTmÞ; (10)

d�

d lnl
¼ �þ �g2�2K

4
I�ðTmÞ; (11)

dð�TeffÞ
d lnl

¼ 2�Teff þ �g2�2K

8
ITeff

ðTmÞ: (12)

Note that Tm not only acts as an inverse cutoff in that modes
of momenta �<1=Tm dominate the physics at a time Tm

[23,24], but that it also governs the crossover from a short
time behavior where the physics is determined primarily
by the initial state and a long time behavior characterized
by a new nonequilibrium fixed point. This crossover is most
easily seen from Eq. (7), where the scaling dimension of

the lattice 
ðTmÞ ¼ ½Kneq þ Ktr

1þ4T2
m
� 2� depends on time as

follows: At short times (Tm � 1), it is (� 2þ �2K0

4 ) and

hence depends on the initial wave function, while, at
long times (Tm � 1), a nonequilibrium scaling dimension
(� 2þ Kneq) emerges.

Above, IK;u;�;Teff
reach steady-state values at Tm � 1,

whereas for short times, they vanish as Tm ! 0, as
expected since the effect of the lattice potential vanishes
at Tm ¼ 0. For example, at short times, IK �OðT2

mÞ
[19,25]. Equations (8) and (10) represent the renormaliza-
tion of the interaction parameter and the velocity. The
effects of the latter being small will be neglected, and in
what follows we set u ¼ 1. Equations (11) and (12) show
the generation of dissipation and noise that represent in-
elastic scattering between bosonic modes [5,6].

In what follows, we do an analysis for a time Tm < 1=�,
where 1=� is the time in which the distribution function
first begins to change due to inelastic scattering. A pertur-
bative calculation [5,6] shows that for small quenches
(jK0 � Kj ! 0) and at steady state, �� g2ðK0 � KÞ4.
Since � � 1, one may easily be in the regime of

Tm � 1, but Tm� � 1, so that inelastic scattering may
be neglected. At these times and in what follows, we will
only use Eqs. (7)–(9).
The behavior of the system is very different depending

upon K0, K, and g. We discuss four cases (see Fig. 1).
Case (a) is when the periodic potential is irrelevant at all
times after the quench, case (b) is when the periodic
potential is always relevant, case (c) is when the periodic
potential is relevant at short times and irrelevant at long
times, and case (d) is when the periodic potential is irrele-
vant at short times and relevant at long times. For case (d),
we show that an order parameter behaves in a discontinu-
ous way in time. There is a critical time T�

m after which
the order parameter begins to increase as a nonanalytic
function of time, indicating a dynamical phase transition.
In contrast, for case (c), the behavior of the order parameter
is analytic in time.
We use 
0, g0, Tm0, and �0 to denote bare physical

values. From Eq. (8), we define an effective interaction

geffðTmÞ ¼ g
ffiffiffiffiffiffiffi
��2

8

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IKðTmÞ

p
�K
2

ffiffiffiffiffi
K
K0

q
, where geff goes to zero

as Tm ! 0 and reaches a steady-state value for Tm � 1.
Physically, this implies that at short times the particles
have not had sufficient time to interact; therefore, however
large g may be, any renormalization effects due to inter-
actions are vanishingly small. The time dependence of
geffðTmÞ and 
ðTmÞ will be important for the results.
Case (a), in which the periodic potential is always

irrelevant.—This case occurs for 
ðTmÞ> 0 and a geff that
is not too large [a condition to be made more precise when
discussing case (d)]. Here, the periodic potential renormalizes
to zero and one recovers a gapless theory that eventually looks
thermal at Tm � 1=� [5,6]. The RG predicts how quantities
renormalize in time and in particular shows that at long times
the steady-state state is approached as a power law with

a nonuniversal exponent 
�!�0Tm0�1
AþOð 1

�0Tm0
Þ2A, where

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20ð1Þ � g2eff;0ð1Þ

q
.

Case (b), in which the periodic potential is always
relevant.—This case occurs for 
ðTmÞ< 0. Thus, we are
always in the strong coupling regime. Here, we integrate
the RG equations up to a scale l�ðTmÞ, where the renor-
malized coupling is Oð1Þ. Beyond this scale, our RG
equations are not valid; however, the advantage of the
bosonic theory is that at strong coupling g cosð��Þ ’
gð1� �2�2=2þ 	 	 	Þ so that

ffiffiffi
g

p
may be identified with

a gap. The physical gap or order parameter is then given by
� ¼ ffiffiffi

g
p

=l� ¼ 1=l�. Since l�ðTmÞ depends on time, it tells

us how the order parameter evolves in time [26].
Let us first consider short times Tm0�0 � 1. Here,

perturbation theory is valid and gives �1 � g0T
2
m0, a result

that is consistent with a lattice quench at the exactly
solvable Luther-Emery point [27]. At long times after the
quench, the scaling dimension is 2� Kneq. Provided

that �Tm0�1, we find the steady-state order parameter,
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�ss¼ðgeff;0Þ1=ð2�KneqÞ. Compare this with the order parame-

ter in the ground state of Hf [9] �eq¼ðgeff;0Þ1=ð2�KeqÞ.
Since Kneq >Keq and geff;0 � 1, the order parameter at

long times after the quench is always smaller than the order
parameter in equilibrium. The RG equations may also be
solved at intermediate times [19] 1

�0
� Tm0 � 1

� . Here, we

find that � ¼ ½ð�0Tm0Þ�2K0=4�Kneqgeff;0�1=ð2��2K0=4Þ. Thus,
at intermediate times, the gap decreases with time if

Kneq >
�2K0

4 or increases with time for the reverse case.

For K0 ¼ K, this intermediate time power-law dynamics is
absent.

Case (c), in which the periodic potential is relevant at
short times and irrelevant at long times.—This case occurs
when 
ðTmÞ changes sign from negative to positive and
geff is not too large. Here, the short time behavior is the
same as case (b); however, at long times, the order para-

meter decreases with time as �� ð 1
�0Tm0

Þ1þA=ð2��2K0=4Þ.
Figure 2 summarizes the behavior of the order parameter
for cases (b), (c), and (d) [case (d) is discussed next]. The
nonmonotonic dependence of the order parameter in time
is due to the time dependence of the scaling dimension,
which physically leads to a situation where quantum fluc-
tuations are enhanced [suppressed] at a later time for

ðTm ¼ 1Þ> 
ðTm ¼ 0Þ [
ðTm¼1Þ<
ðTm¼0Þ], caus-
ing the order parameter to decrease [increase].

Case (d), in which the periodic potential is irrelevant at
short times and relevant at long times.—This case occurs
under two conditions. Either 
ðTmÞ changes sign from

positive to negative during the time evolution or 
ðTmÞ is
always positive, but geffðTmÞ becomes sufficiently large at
some time T�

m. The latter includes the case of a pure lattice
quench (K0 ¼ K). For either condition, the RG treatment,
which neglects the effect of irrelevant operators, shows that
at long times, the order parameter reaches a steady-state
value, while at short times it is zero. This indicates a
nonanalytic behavior at a critical time T�

m.
Figure 1 contrasts case (d) with the previous cases

considered where the order parameter behaved analyti-
cally. The renormalized interaction parameter geffðTmÞ
is vanishingly small right after the quench. For case (b),
since infinitesimally small geff is a relevant perturbation,
an order parameter starts growing immediately after the
quench. On the other hand, for a quench corresponding
to case (d), Fig. 1 shows that geff has to be larger than a
critical value in order to be in the Mott phase. Thus, one
has to wait some finite time before which renormalization
effects become large enough for an order parameter to
grow. We now discuss this physics in a more quantitative
manner and for simplicity consider only the case of the
pure lattice quench.
Let us suppose that Tm0�0 � 1. Here, the RG equations

are solved in two steps, one for 1< l < Tm0�0 and the
other for Tm0�0 < l. For the first step, since IK varies
slowly at long times, eventually reaching a steady-state

value, we may assume that 12 j dIKd lnl j � j d lngd lnl j. Thus, the RG
equations are the conventional ones of the equilibrium

BKT transition dgeff
d lnl ¼ �geff
,

d

d lnl ¼ �g2eff . For the second

step, (�0Tm0 < l), since IK � T2
m, the RG equations

become dgeff
d ln�l

¼ �geff
,
d

d ln�l

¼ � g2
eff
�l2
, where �l ¼ l

�0Tm0
.

The solution shows that there is a critical time T�
m such

that geff is irrelevant before this time and is a relevant
perturbation after this time. We find that

�0T
�
m¼eð1=DÞarctanð
0=DÞ�ð1=DÞarctanðD=2Þ; D2¼g2eff;0�
20:

(13)

The deeper one quenches into the Mott phase; the shorter
is T�

m. Moreover, T�
m is longest along the critical line

geff;0 ¼ 
0. By identifying a length scale at which

geffð�l�Þ � 1, we find that the order parameter grows as

���smooth þ �ðTm0 � T�
mÞ

� 1

�0Tm0

½geffðl ¼ �0Tm0Þ�f2=ðTm0�T�
mÞ; (14)

where f2 ¼ 1
jd
ðl¼TmÞ=dTmjTm¼T�m j

and �smooth is a background

contribution arising from irrelevant operators whose ef-
fects may be treated perturbatively. Thus, while � is
always nonzero after the quench due to the presence of
irrelevant terms, due to the relevant terms it increases as a
nonanalytic function of time after a critical time.
An important question concerns the spatial variation of

the order parameter. Quenches in gapless systems are

b,c

m0T

ss∆

m
*T

m0
βT

m0T2
m0T
−δ

m0T
−β

01/Λ

∆

b,d

b

d

b

c
d

ss1/∆

FIG. 2. Time evolution of the order parameter after the quench
for cases (b)–(d). Solid lines show a short time behavior (Tm0 �
1
�0

), an intermediate time asymptotics ( 1
�0

� Tm0 � 1
�ss

), and a

long time behavior Tm0 � 1
�ss

. At intermediate times, the order

parameter increases as T�
m0 (decreases as T

��
m0 ) when Kneq <

�2K0

4

(Kneq >
�2K0

4 ) for case (b) and eventually reaches a steady-state

value �ss. For case (c), the order parameter decreases for Tm0 �
1
�0

as � / T�	
m0 . For case (d), the order parameter increases after

time T�
m in a nonanalytic manner in time [Eq. (14)]. �¼

�ðj�2K0

4 �KneqjÞ, 	¼1þA�, �¼ 1
2��2K0=4

, and A¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20�g2eff;0

q
.

Dashed lines are a guide to the eye for the crossover regimes.
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associated with light-cone dynamics where two points a
position R apart get correlated after a time Tm � R [28].
For our case, any two points separated by R> Tm will
behave primarily like the initial state with power-law cor-
relations in position determined by K0. The predictions
for the order parameter made above are for a region within
a light cone R< Tm. The dynamical transition at T�

m is
associated with the appearance of order in regions of size
R� � T�

m, after which the ordered regions will begin to
grow in size.

In summary, in employing a RG we have identified a
novel dynamical phase transition in a strongly correlated
system where an order parameter grows as a nonanalytic
function of time after a critical time [Eq. (14)]. The order
parameter shows rich dynamics both at the transition and
for more general quenches (Fig. 2). Identifying similar
dynamical transitions in higher dimensions where thermal
fluctuations are less effective in destroying order is an
important direction of research.
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