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Although geometrical frustration transcends scale, it has primarily been evoked in the micro- and
mesoscopic realm to characterize such phases as spin ice, liquids, and glasses and to explain the behavior
of such materials as multiferroics, high-temperature superconductors, colloids, and copolymers. Here we
introduce a system of macroscopic ferromagnetic rotors arranged in a planar lattice capable of out-of-
plane movement that exhibit the characteristic honeycomb spin ice rules studied and seen so far only in its
mesoscopic manifestation. We find that a polarized initial state of this system settles into the honeycomb
spin ice phase with relaxation on multiple time scales. We explain this relaxation process using a minimal
classical mechanical model that includes Coulombic interactions between magnetic charges located at the
ends of the magnets and viscous dissipation at the hinges. Our study shows how macroscopic frustration
arises in a purely classical setting that is amenable to experiment, easy manipulation, theory, and
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computation, and shows phenomena that are not visible in their microscopic counterparts.
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Frustration in physical systems commonly arises
because geometrical or topological constraints prevent
global energy minima from being realized. Although not
limited to microscopic phenomena, it is commonly seen in
compounds with spins forming lattices with a triangular
motif [1]. In such systems, frustration may lead to the
existence of ice selection rules [2] that have been observed
in a variety of materials where spins form networks such as
the corner-sharing tetrahedra, known as the Pyrochlore
lattice [3-5], leading to monopolelike excitations [6] and
other exotic phases of matter [7]. Even though artificial
spin ices [8—10] have shown that frustration can be mim-
icked by classical magnets, these systems do not account
quantitatively for the effects of inertia, dissipation [11-13],
dilution, and geometrical disorder because of the mesoscopic
scale and fast dynamics of the domain walls (~ 10 ns) that
hinder the understanding of collective dynamics processes.
Here we aim to circumvent this situation by introducing a
new macroscopic realization of a frustrated magnetic sys-
tem created using single out-of-plane rotational degree of
freedom magnetic rotors, arranged in a kagome lattice, a
pattern of corner-sharing triangular plaquettes that dy-
namically evolves into a spin ice phase after a magnetic
quench. The ice phase is reached due to the delicate inter-
play between inertia, friction, and Coulomb-like interactions
between the macroscopic magnetic rods. Our prototypical
frustrated system has a few advantages for research in
frustrated magnetic systems associated with the ability to
(1) tune the interactions through changes in distance and/or
orientation between magnets and (ii) examine the lattice
relaxation dynamics by direct visualization at a single par-
ticle level.

A minimal macroscopic realization of local frustration
can be seen easily in a 120° star configuration using three
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PACS numbers: 75.10.Hk, 45.20.dc, 63.20.dd

ferromagnetic rods with their hinges on a plane [Fig. 1(a)].
The rods have length L = 2a = 1.9 X 1072 m, diameter
d=15X10"3m, mass M = 0.28 X 1073 kg, and satu-
ration magnetization M, = 1.2 X 10° Am~!. By design
the only allowed motions for the rotors are rotations in
the polar direction «. The hinges supporting the rods were
placed at the sites of a kagome lattice with lattice constant
I =/3(a + A) where A is the shortest distance between
the tips and the nearest vertex center and A/L ~ 0.2
[Fig. 1(a)], so that when in the x-y plane, the magnets
realize the bonds of a honeycomb lattice. The magnetiza-
tion of a rotor i is defined as the vector m; joining its N to
its S pole; thus m; is the coarse-grained spin variable for
each magnet. When all three magnets are close to each
other, the lowest energy configuration consists of one pole
being different from the others, leading to a frustrated state
consisting of permutations of NNS or SSN (S designates
south pole; N designates north pole) that correspond to the
honeycomb spin ice rules [9,14]. With this unit-cell pla-
quette, we prepare a polarized lattice of n = 352 of these
magnetic rotors, with an unavoidable geometrical disorder
in the azimuthal orientation of the rotors, 6, due to lattice
imperfections 86,,,, ~ 2°; this follows a Gaussian distri-
bution with mean 60 = 1.2°. We oriented the S poles of all
rotors out of the plane by applying a strong magnetic field
along the 2 direction B, = 3.2 X 1073 T (Supplemental
Material, S4 [15]). At t = 0O the field was switched off, to
allow for the lattice to relax—a procedure that was
repeated several times. After about 2 s, all the rotors had
reached equilibrium configurations very near the x-y plane
(the nonplanarity out of the x-y plane da ~ 10° on aver-
age) and in the honeycomb spin ice manifold. Figure 1(b),
shows a picture of the lattice where all the rods fulfill the
ice rules. The experimental distribution of vertices is
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FIG. 1 (color online).
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(a) A triad of magnetic rotors (lying in one of the sublattices indicated as 1, 2, and 3) having length L =

2a = 1.9 X 1072 m, diameter d = 1.5 X 1073 m, mass M = 0.28 X 1073 kg, and saturation magnetization M, = 1.2 X 10° Am™!
are located at § = 120° with respect to each other. The out-of-plane degree of freedom is denoted by the polar angle «. Painted in
black, the magnet south pole (S) is distinguished from its north pole (N). (b) Picture of the lattice with its centers located at distance
I = \/3(a + A) with the n rods lying in the x-y plane fulfilling the honeycomb spin ice rules. Inset shows the Fourier transform of the
lattice. (c) The numerical equivalent lattice having the same experimental parameters. In this case the point of the arrow denotes the
S pole of the magnet. (d) Top: Histograms taken from 10 experiments and simulations showing the experimental (red or light bars) and
numerical (black or dark bars) distribution of vertices. Bottom: Local energy of the eight vertex configurations possible in the
honeycomb lattice, in units of D = 107> J (Supplemental Material, S6 [15]).

shown in the (red or light) bars of Fig. 1(d). We find all
vertices falling into the six low-energy (spin ice) configu-
rations while high-energy states (type 1 and 2) are absent.

This macroscopic spin ice consists of elemental rotor
units that constitute a frustrated triad that we characterize
at a static and a dynamic level (Supplemental Material, S1,
S2, and S3 [15]). This allows us to use a dipolar dumbbell
approach to the magnets [6], determine the charge g =
M d?/4 ~ 2.03 Am, at each pole, find the damping time
scale for an isolated rod 7p ~ 1 s, and examine how
Coulomb interactions and geometrical disorder in 6 and

A control the orientations of the rods relative to each other.
On a collective level, the relaxation of the lattice from the 2
polarized state to the spin ice manifold may be character-
ized in terms of the correlation between nearest neighbor
spins « and B, with §,Sz = 1 when m,, - mg is positive,
SoSg = — 1 otherwise. From high-speed movies (400 fps),
we extracted the full time trajectory «;(¢) of the ith rotor
(Supplemental Material, S4 and Movie MS1 [15]) and
computed the spin-spin correlations.

We find that there are three stages in the spin relaxation
process. In stage I, corresponding to the first ~0.07 s, the
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rotors break their initial axial symmetry, Fig. 2(a), and
correlations decay rapidly with a characteristic Coulomb
time scale ¢, ~ 0.02 s, Fig. 2(d), which is the shortest time

. . . . Jal .
scale in the lattice relaxation, with 7, ~ % dominated

oscillate rather than spin. For our experimental parameters
[Fig. 1(a)], the phase space trajectory changes from libra-
tions to damped oscillations after 0.45 s (Supplemental
Material, Fig. S7 [15]); the rotors typically average about

four full rotations before they switch to oscillations.
Finally, in Stage III [Figs. 2(c) and 2(d)] the rods oscillate
without full rotations: when we fit the experimental
dynamics at this state to a decaying exponential, we find
t, ~ Tp; thus this stage is dominated by dissipative effects.

To understand these different dynamical regimes, we
performed molecular dynamics simulations of the massive
underdamped rotors interacting through the full long-range
internal Coulomb interactions between all the rods in the
lattice using a Verlet algorithm (Supplemental Material,

by internal Coulomb interactions for the relaxation of a rotor
interacting with two neighbors (Supplemental Material, S4
[15]) in the absence of damping and external torques [inset,
Fig. 2(d)]. Next, magnets of sublattices 1 and 2 [Fig. 1(a)]
organize in head-to-tail chains along the y direction, while
those belonging to sublattice 3 still remain nonplanar,
Fig. 2(d). In Stage II, once the sublattice 3 becomes planar,
all the rods spin continuously leading to a plateau in the
spin correlations [Fig. 2(d)]; eventually the kinetic energy
of the rotors has been dissipated sufficiently that the rotors

(b) (©)

<Sasﬁ>

FIG. 2 (color online). Lattice dynamics characterized by nearest neighbor spin correlations, (S, S B>' (a) Stage I: once B, is turned
off, the rotors originally pointing along Z break their axial symmetry. (b) The image showing the end of stage I and the onset of stage 11
when rods rotate with respect to their center of mass yielding a plateau in (S,Sg). (c) A snapshot of the rods oscillating in stage IIL.
(d) In red (dark dots), experimental data obtained via image processing; in blue (light squares), molecular dynamics simulation results
from the numerical solution of equation (S4) [15] where the full coulomb contributions from all neighbors is taken into account. At
t = 0 all S poles point along Z. Stage I is dominated by Coulomb interactions between rods and characterized by the Coulomb time
scale ¢,. In Stage II, all rotors spin until dissipation damps out the spin in favor of oscillations, leading to Stage III where they exhibit
damped oscillations. After relaxation the rods lie in the x-y plane in a honeycomb spin ice magnetic configuration, with its
characteristic nearest neighbor spin correlations (S,Sz) = 1/3 (solid line). Inset: Experimentally measured value of (S,S ) during
the initial explosive evolution (red or dots) compared with cos(a) where « is the solution of Eq. (S2) in the Supplemental Material [15]
for one rotor interacting with two neighbors, in the absence of damping and external torques (green or continuous curve).
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S5, Fig. S10, and Movie SM2 [15]). In Fig. 2(d), we see
that the computed nearest neighbor spin correlations for
the relaxation of the numerical lattice has the same three
qualitative different regimes as in the experiments when
the lattice relaxes from a polarized state to its spin ice
manifold. Furthermore, the Coulomb and damping time
scales for stages I and III as well as the plateau featuring
stage II are in good agreement with the experiments. The
observed high-frequency fluctuations in (S,Sz)(¢) in both
experiments and simulations are due to the Coulomb cou-
pling between rods that rapidly reorient while they relax
due to the fluctuations in the internal magnetic field.
Having examined the dynamics of relaxation to the spin
ice state, we now turn to the lattice response when a dipole
with charge |Q¢| at each pole and length L¢, at a vertical
distance &, underneath the relaxed lattice is moved along
one of the three sublattices at speed v (Supplemental
Material, Fig. S9 [15]). For an isolated rotor, the critical
torque that is required to destabilize the planar configura-
tion is given by T.~ 2aB.q, where B, is the applied
magnetic field; experiments on many rotors yielded an
average B, ~ (2.4 =0.1) X 107* T. Equivalently, the
threshold distance at which the external field will over-
come both internal Coulomb interactions and static friction
is given by h* ~ /Q°qapu/T.. Dynamically, the internal
Coulomb interactions set a time scale for small out-
of-plane oscillations of the rotors in the lattice, given by

Toh ~ VAZI/ wog*a ~ 0.01 s for the experimental parame-
ters at hand. Thus, there are two dimensionless quantities
that determine the response to the external perturbation:
the ratio between phononic and kinetic time scales v7,,/a
and the ratio between internal and external magnetic
forces, F"/FeXt = gh?/(Q¢A?).

In Fig. 3, we characterize the phase diagram of the
dynamical response of the spin ice lattice in terms of these
dimensionless parameters. For & << h*, the lattice is dis-

turbed only in a band of width D(h) ~ \[(h*zh)z/3 — h?

centered along the trajectory of the moving external dipole,
based only on local interactions, static friction, and inter-
actions with the external dipole (Supplemental Material,
Fig. S9 [15]). For large v, Tph/Tk >> 1 so that the rotors
have little time to respond and barely oscillate in an inertia-
dominated regime. In the opposite limit, large amplitude
oscillations and flips are apparent as there is enough time for
the rotors to interact with the external dipole. Our results for
these regimes show that the simulations (filled circles) and
experiments (filled squares) agree. The solid line defines a
threshold of the rms fluctuations for the oscillations of all the
rods 8 = 0.5 (Supplemental Material, S4 [15]) separating
the regimes. To understand this, we resort to a simple
single rod approximation where the impulsive response
of a rotor due to a long dipole located at a distance

d(t) = Jh* + (vt)? balances the change in its angular
momentum yielding & ~ h*(Q°qau,/I)*?/v?, consistent
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FIG. 3 (color online). Phase diagram of the lattice dynamical
response to an external perturbation. The horizontal axis shows
the dimensionless ratio of the kinetic and phononic time scales
with v the speed of an external dipole, while the vertical axis
shows the dimensionless ratio of the internal and the external
magnetic forces due to an external dipole of strength Q located at
distance h from the lattice (see text for details). Experimental
and numerical data shown in squares and circles, respectively,
and colors define the nature of the lattice dynamical response to
the external perturbation. We see that the dynamics may be
broken up into a frictionally dominated, interaction dominated,
or inertially dominated regime as a function of the relative
magnitude and rate of external forcing.

with the observations when v, /a > 1. Varying inertia
from I to 41, using our simulations we confirmed that as
I grows, the boundary between interaction and inertial
regime shift to the left; the inertial regime is reached for
smaller values of v7,,/a and gh?/(Q°A?). When h > h*,
the Coulomb force due to the external field is not able
to overcome the combined effects of static friction and
internal Coulomb interactions, and the lattice falls into a
friction-dominated one in which oscillations are not
apparent.

Our spin ice phase emerges in a system of damped
macroscopic rotors, purely driven by interactions in a clas-
sical mechanical setting that differs from those found in its
micro- and mesoscopic relatives. Using a minimal model
we can capture the dynamical evolution of the collection of
rotors in the lattice observed in our experiments and repro-
duce the three main stages of lattice relaxation from a
polarized state: explosive behavior lasting ?., dissipative
librations, and damped oscillations. The advantages of
studying this macroscopic realization beyond the present
work include the fact that (i) the interactions can be tuned
through changes in the diameter of magnets or distance or
orientation between them (Supplemental Material, Fig. S4
[15]), (ii) inertial and dissipative effects can be studied by
controlling the friction coefficient at the hinges as well as
the mass of the rods, (iii) the effect of vacancies or random
dilution can be examined by removing rotors from the
lattice, (iv) the lattice relaxation dynamics can be directly
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visualized at single particle level, and (v) the system can be
easily generalized to three dimensions (3D) by stacking
plates with hinged rotors along the z direction. Indeed a
minimal 3D realization is shown in the Supplemental
Material, Fig. S12 [15]: a tetrahedral configuration like
the one found in the Pyrochlore lattice was created
placing three acrylic plates one on the top of the other; the
bottom and top plates contain three rotors defining an equi-
lateral triangle, and the middle plate contains one rotor
located equidistant from the others. The ease of fabrication,
manipulation, and measurement and the study of a variety
of soft modes in artificial lattices in a system that is nearly
five orders of magnitude larger and slower than its meso-
scopic counterpart suggests that there is a new class of
phenomena waiting to be explored in macroscopic frus-
trated systems.
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