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We study the coherent dynamics of a quantum many-body system subject to a time-periodic driving.

We argue that in many cases, destructive interference in time makes most of the quantum averages time

periodic, after an initial transient. We discuss in detail the case of a quantum Ising chain periodically

driven across the critical point, finding that, as a result of quantum coherence, the system never reaches an

infinite temperature state. Floquet resonance effects are moreover observed in the frequency dependence

of the various observables, which display a sequence of well-defined peaks or dips. Extensions to

nonintegrable systems are discussed.
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In both classical and quantum physics, the dynamics of a
small system, such as a single oscillator, spin, or molecule,
is characterized by a handful of internal frequencies. These
can be detected as resonances: driving the system with a
periodic perturbation the dynamics at a resonance is char-
acterized by an efficient transmission of energy to (and
from) the system. More generally, the dynamics of a peri-
odically driven system will result in a complex signal
comprising beatings and revivals as well as full memory
of the initial conditions [1,2]. In turn, it is well known that
dissipation may lead to a different scenario: in a single
periodically driven two-level quantum systems [3,4] a
coupling, albeit weak, to an external environment leads
at long times to the ‘‘synchronization’’ of the dynamics
with the perturbation: its density matrix, after an initial
transient, becomes time periodic, and memory of the initial
state is lost.

It is natural to ask whether the above scenario applies
also to many-body, yet isolated, periodically driven quan-
tum systems. This was a purely academic question, until
the recent progress in the context of ultracold atomic gases
has made it possible to address experimentally their quan-
tum dynamics [5,6]. If a many-body system is subject to a
periodic driving, under which conditions is it going to get
synchronized with the perturbation? And what kind of
information will be kept on the initial state? Many-body
systems, in the thermodynamic limit, are characterized by
a continuum of frequencies, which suggests that the system
absorbs indefinitely energy from the periodic driving [7].
In addition, nonintegrable systems act as a thermal bath for
themselves [5]; then one could expect a significant loss of
memory of the initial conditions, as indeed observed in a
number of systems subject to an abrupt quench of a single
parameter [8–11]. While theoretical progress in nonequi-
librium quantum many-body physics has been mainly
concerned with sudden quenches [5] and slow annealings
[12–16], important theoretical [17–24] and experimental

[25–30] works dealing with the effects of a periodic driving
on the coherent dynamics have recently appeared.
In this Letter we discuss the coherent dynamics

of a periodically driven quantum many-body system.
Using Floquet theory, we argue that, even if the dynamics
is fully coherent, destructive interference in time makes
most of the observables attain, at long times, a time-
periodic regime synchronous with the perturbation, in
which memory of the initial state enters through some
overlap factors. We explicitly demonstrate this for an
integrable system, an inhomogenous quantum Ising chain
subject to a time-periodic transverse field [21,22,24],
where we show that the convergence towards a periodic
steady regime follows whenever most of the Floquet spec-
trum is a continuum. We argue that this continuity condi-
tion is likely often met by many-body systems in the
thermodynamic limit, perhaps with the important excep-
tion of disordered systems, although a rigorous theory for
general nonintegrable systems is lacking. Focusing on the
Ising chain, we discuss the dynamics of energy absorption,
showing that the phase coherence of the system is seen
transparently in the plethora of peaks or dips emerging
in the frequency dependence of the various observables.
Because of phase coherence, the system does not absorb
energy indefinitely: the resulting density of excitations
stays well below the maximum attainable value, as indeed
observed in NMR systems [31].
Consider a quantum many-body system governed by a

periodic Hamiltonian HðtÞ ¼ Hðtþ �Þ and the quantum

average OðtÞ ¼ h�ðtÞjÔðtÞj�ðtÞi of an operator ÔðtÞ (pos-
sibly � periodic), j�ðtÞi being the state of the system.
Thanks to Floquet theory [2,3,32], we know that there is
a complete basis of solutions of the Schrödinger equation
(the Floquet states) which are periodic up to a phase
j��ðtÞi ¼ e�i ���tj��ðtÞi. The many-body quasienergies
��� are real, and the Floquet modes j��ðtÞi are periodic:
both can be extracted from the knowledge of the evolution
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operator Ûðt; 0Þ for 0 � t � �. Expanding j�ðtÞi ¼P
�R�e

�i ���tj��ðtÞi in the Floquet basis, with the overlap
factors R� � h��ð0Þj�ð0Þi, we get

OðtÞ ¼ X

�

jR�j2O��ðtÞ þ
Z 1

�1
FOð�Þe�i�td�; (1)

where O��ðtÞ ¼ h��ðtÞjÔðtÞj��ðtÞi and FOð�Þ �
P

���O��ðtÞR�
�R��ð�� ��� þ ���Þ. The first term,

involving the diagonal elements of O��, is clearly � peri-

odic, while the second term describes fluctuations due to
off-diagonal elements, and has been recast as the Fourier
transform of a (weighted) joint density of states with the
quasi-energies in place of the usual energies. If, in the
thermodynamic limit, the Floquet spectrum approaches
a continuum with the weights O��ðtÞR�

�R� depending

smoothly on the quasienergies, then FOð�Þ is a smooth
function, whose Fourier transform vanishes for large t due
to destructive interference in time (Riemann-Lesbesgue
lemma), an internal dephasing akin to inhomogenous
broadening in NMR [31]. Memory of the initial state is, in
principle, kept into the overlaps R�.

To exemplify our general argument, consider a quantum
Ising chain:

ĤðtÞ ¼ � 1

2

XL

j¼1

h
Jj�

z
j�

z
jþ1 þ hjðtÞ�x

j

i
: (2)

Here, the �x;z
j are spins (Pauli matrices) at site j of a

chain of length L with periodic boundary conditions
�x;z

Lþ1 ¼ �x;z
1 , the Jj are longitudinal couplings, and the

hjðtÞ transverse fields. This Hamiltonian can be trans-

formed, through a Jordan-Wigner transformation [33], to
a ‘‘solvable’’ quadratic-fermion form. When the system is
time-independent and homogenous, hj ¼ h and Jj¼J¼1,

this model has two mutually dual gapped phases, a ferro-
magnetic (jhj< 1), and a quantum paramagnetic (jhj> 1),
separated by a quantum phase transition at hc ¼ 1. In the
general time-dependent and inhomogeneous case, the
unitary dynamics of HðtÞ can be studied through a time-
dependent Bogoliubov ansatz; see final discussion and
Supplemental Material [34]. Although much of what we
will say applies also to the inhomogeous case, we start with
a homogenous chain, Jj ¼ J ¼ 1 and hjðtÞ ¼ hðtÞ. For a
homogenous chain, going to k space, ĤðtÞ becomes a sum

of two-level systems: ĤðtÞ ¼ PABC
k ĤkðtÞ ¼ PABC

k ½�kðtÞ�
ðcyk ck � c�kc

y
�kÞ � i�kðcyk cy�k � c�kckÞ�, where �kðtÞ ¼

hðtÞ � cosk, �k ¼ sink, and the sum over k is restricted
to positive k’s of the form k ¼ ð2nþ 1Þ�=L with n ¼
0; . . . ; L=2� 1, corresponding to antiperiodic boundary
conditions (ABC) for the fermions [33], as appropriate for

L multiple of 4, as we assume. Each ĤkðtÞ acts on a two-

dimensional Hilbert space generated by fcyk cy�kj0i; j0ig,
and can be represented in that basis by a 2� 2 matrix
HkðtÞ ¼ �kðtÞ�z þ �k�

y, with instantaneous eigenvalues

�EkðtÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2kðtÞ þ�2

k

q
. Since ĤðtÞ conserves the fer-

mion parity and the momentum, but mixes j0i with

cyk c
y
�kj0i, the state has a BCS-like form j�ðtÞi ¼

Q
ABC
k>0 jc kðtÞi ¼

Q
ABC
k>0 ðvkðtÞ þ ukðtÞcyk cy�kÞj0i with

i@
_uk
_vk

� �
¼ HkðtÞ uk

vk

� �

(Bogoliubov–de Gennes equations).
Assuming the simplest periodic modulation across the

critical point, hðtÞ ¼ hc þ �hðtÞ ¼ 1þ A cosð!0tþ ’0Þ,
the dynamics in time of each two-level system appears to
be analogous to a sequence of Mach-Zehnder interferome-
ters in space, see Fig. 1, each avoided crossing being
analogous to a beam splitter where the system, starting in
the ground state, is reflected or transmitted with an ampli-
tude rk and tk. The phase accumulated in between two
avoided crossings is crucial for the long-time dynamics:
destroying phase coherence by repeated ‘‘measurements’’
of the energy at the end of each period, the system is
reflected of transmitted with probabilities jrkj2 and jtkj2,
and one can easily prove [22] that it would absorb energy
indefinitely, ending up in an infinite temperature mixed
state with equal weights 1=2.
Turning to the exact coherent evolution of our

system, and applying Floquet theory [2,3,32] we
(numerically) calculate, for each k, the quasienergies
�þ

k ¼ ���
k ¼ �k and the Floquet modes j	þ

k ðtÞi in

terms of which the k component of the state j�ðtÞi reads
jc kðtÞi ¼ rþk e

�i�ktj	þ
k ðtÞi þ r�k e

i�ktj	�
k ðtÞi with r�k ¼

h	�
k ð0Þjc kð0Þi. The continuous Floquet spectrum leads to

FIG. 1 (color online). (Upper inset) Sketch of the dynamics
within each k subspace: At each avoided crossing the system can
be either reflected by the gap or transmitted with amplitude rk
and tk. (Main figure) Evolution of the average energy density
eðtÞ ¼ h�ðtÞjĤðtÞj�ðtÞi=L versus t with a driving field hðtÞ ¼
1þ cosð!0tÞ, for @!0=J ¼ 2. The lower and upper curves are
the instantaneous ground state and maximum energy density,
versus t. Notice the initial transient (left panel, obtained from
numerical solution with L ¼ 2000), and the final periodic be-
haviour of eðtÞ (right panel, obtained from eperðtÞ, again with
L ¼ 2000).
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the asymptotic decay of the fluctuations around the
periodic steady-state regime. Consider, for instance,

the average energy eðtÞ ¼ h�ðtÞjĤðtÞj�ðtÞi=L, which
(as seen in Fig. 1) stabilizes well below the infinite-
temperature value (e ¼ 0) into a well-defined periodic

function eðperÞðtÞ ¼ P
�¼�

R
�
0

dk
2� jr�k j2h	�

k ðtÞjĤkðtÞj	�
k ðtÞi,

after a transient given by a Fourier-integralR
�
0

dk
� <½r��

k rþk h	�
k ðtÞjĤkðtÞj	þ

k ðtÞie�2i�kt� oscillating and

decaying to 0 as a power law when t ! 1. A decaying
transient for the transverse magnetization has been ana-
lyzed in Ref. [24].

Many interesting quantities can be extracted from eðtÞ at
different times. For definiteness, consider the case when
the field oscillates as hðtÞ ¼ 1þ cosð!0tÞ (i.e., A ¼ 1 and
’0 ¼ 0), making excursions between 2 and 0, repeatedly
crossing the critical value hc ¼ 1. h vanishes for all
t¼t2nþ1¼ð2nþ1Þ�=!0, where the density of defects
(kinks) 
d of the classical Ising chain [16] is 
dð!0;nÞ ¼
h�ðt2nþ1ÞjPL

j¼1½1��z
j�

z
jþ1�j�ðt2nþ1Þi=ð2LÞ ¼ eðt2nþ1Þ�

eGSðt2nþ1Þ. The index n counts the number of times,
2nþ 1, the system goes through the critical point.
Fig. 2(a) shows 
d vs !0 for n ¼ 0, 1, 12, 1. After only
one crossing (n ¼ 0) a single Landau-Zener (LZ) event
occurs for the low-k critical modes: the resulting curve
resembles that for linear annealing of the transverse field
[16,21]: 
d / ffiffiffiffiffiffi

!0
p

for !0 ! 0 (Kibble-Zurek scenario).

The saturation for !0 ! 1 is reproduced by the impulsive

limit 

imp
d ¼ h�ð0ÞjPL

j¼1½1� �z
j�

z
jþ1�j�ð0Þi=2L, where

the system remains frozen in the initial state j�ð0Þi. For
n ¼ 1, interference effects between the three LZ crossing
encountered lead to peaks (at intermediate frequencies)
and to a strong decrease of 
d for larger frequencies.
This tendency persists for larger n’s, until the impulsive
limit is substituted by a new large-!0 plateau with a
markedly reduced 
d, consistently with the vanishing of
the transient component of eðtÞ. In the limit n ¼ 1, inter-
ference effects between successive LZ crossings give rise
to two series of peaks which occur for @!0=J ¼ 4=p, with
p ¼ 1; 2; . . . and for the !0’s for which J0ð2J=@!0Þ ¼ 0,
J0 being the Bessel function of order 0. Both series are easy
to explain (see Supplemental Material [34] for a detailed
discussion): the first one is due to particular resonances
at k ¼ �, occurring in the spectrum of the Floquet quasie-
nergies �k, and originating from multiphoton processes
in the Shirley-Floquet Hamiltonian [32]; the second one
originates from the behavior of the critical modes with
k ! 0 for which the rotating wave approximation
[3,22,35] applies.
A similar interference scenario occurs when we consider

the work done on the system at the end of each period. At
t ¼ t2n ¼ 2n�=!0 the field has performed n full periods
of oscillation, and the work done (per spin) is wn ¼
eðt2nÞ � eð0Þ. Figure 2(b) shows the results for the total
workw ¼ wn!1, as a function of the frequency!0. Notice
that the total work is finite since the system stops absorbing
a net amount of energy during the initial transient, and
then settles down into a periodic dynamics, during each
cycle of which no net work is performed. We clearly
observe three different regimes for wð!0Þ: (i) a large-!0

plateau, (ii) an intermediate frequency region with peaks at
@!0=J ¼ 4=p, (iii) and a low-frequency region w� ffiffiffiffiffiffi

!0
p

with dips at the zeroes of J0ð2J=@!0Þ. In the Supplemental
Material [34] we discuss also the average transverse
magnetization mðtÞ ¼ h�ðtÞjPj�

x
j j�ðtÞi=L.

The model discussed was very special: integrable, trans-
lationally invariant, and reducing (in k space) to an
assembly of two-level systems. Similar physics apparently
emerges also in a periodically modulated homogeneous
one-dimensional Hubbard model (Bethe-ansatz integrable
at equilibrium), as numerically found in Fig. 1 of Ref. [20].
If we break integrability, retaining translational invariance,
the dynamics is nontrivial, and a rigorous theory is lacking.
Nevertheless, one could argue that the Floquet spectrum
��� is likely to remain continuous in the thermodynamic
limit. (Indeed, the Floquet spectrum is continuous even for
a single atom under an ac electric field: its static discrete
energy levels always hybridize with the unbounded con-
tinuum via ‘‘multiphoton’’ processes [36]). We therefore
expect, again, a periodic steady regime with vanishing
fluctuations. If we break translational invariance, retaining

integrability to carry on the analysis, e.g., by hjðtÞ ¼ 1þ
hGe

�ðj�jcÞ2=2l2 þ A cosð!0tÞ (a Gaussian inhomogeneity of
width l, sitting at the central site jc ¼ L=2þ 1, in the

FIG. 2 (color online). (a) The density of defects for a driving
field hðtÞ ¼ 1þ cosð!0tÞ at the end of half-periods, i.e., at times
t ¼ t2nþ1 ¼ ð2nþ 1Þ�=!0 when the transverse field vanishes;
n ¼ 0 is the result of a single LZ crossing. (b) The total work
(per spin) done on the system w ¼ eðt2n ! 1Þ � eð0Þ versus the
frequency !0 of the transverse field.
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transverse field), then one has to solve a system of 2L� 2L
Bogoliubov–de Gennes �-periodic equations [37,38],
whose Floquet quasienergies show only a finite number
of discrete states; see left panel of Fig. 3. The discrete
quasienergies lead to delta functions in FOð�Þ, see
Eq. (1), which do not merge into a smooth continuum.
Nevertheless, for extensive operators, e.g., the average
transverse magnetization mðtÞ (upper right panel of
Fig. 3), or for local operators coupling mostly continuum
Floquet modes, the fluctuating contributions due to such
a finite number of delta-functions in FOð�Þ vanish for
L ! 1. On the contrary, fluctuations persist for local
operators sensitive to the discrete states, e.g., the transverse
magnetization at the center of the inhomogeneity mjcðtÞ ¼
h�ðtÞj�x

jc
j�ðtÞi (see lower right panel of Fig. 3). The case

of disordered systems, whose static H has an important
pure-point spectral region, clearly calls for further studies,
particularly on the role of a possible mobility edge in
presence of periodic driving.

The fact that the system does not absorb energy up to the
infinite temperature state is most likely a consequence of
phase coherence and integrability: one would expect that
breaking integrability, i.e., making quasiparticles scatter
inelastically, should lead to heating up to an infinite tem-
perature state. This expectation, natural in the thermody-
namic limit, is not obviously realized in finite-size systems
as a result of the fact that a chaotic spectrum (such as that
of nonintegrable systems) gives rise in many cases to
localization in energy space. Therefore, this issue has to
be clarified with further studies.

In conclusion, we studied the coherent evolution of quan-
tummany-body systems under periodic driving. On the basis

of results obtained for an integrable inhomogenous Ising
chain, we have argued that, under the hypothesis of a con-
tinuous Floquet spectrum, a large class of averages of observ-
ables, after an initial transient, would tend to synchronize
with the driving into a time-periodic ‘‘steady state.’’
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U. Schollwöck, Phys. Rev. Lett. 97, 050402 (2006).
[20] C. Kollath, A. Iucci, I. McCulloch, and T. Giamarchi,

Phys. Rev. A 74, 041604(R) (2006).
[21] V. Mukherjee and A. Dutta, J. Stat. Mech. (2009) P05005.
[22] A. Das, Phys. Rev. B 82, 172402 (2010).
[23] D. Poletti and C. Kollath, Phys. Rev. A 84, 013615 (2011).
[24] S. Bhattacharyya, A. Das, and S. Dasgupta, Phys. Rev. B

86, 054410 (2012).

-3

-2

-1

 0

 1

 2

 3

 0  100  200  300  400  500  600  700

F
lo

qu
et

 q
ua

si
en

er
gi

es
L=100
L=200
L=400

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
m(nτ) L=100

L=200
L=400
L=600

 0  100  200  300  400
-0.85

-0.75

-0.65

-0.55

-0.45

number of periods n

mjc
(nτ)

FIG. 3 (color online). (Left panel) The Floquet spectrum for
an Ising chain with a Gaussian inhomogeneity with l ¼ 20,
hG¼2:8,!0¼10, A¼1 and different values of L. Notice a finite
L-independent number of discrete quasienergies. (Upper right
panel) The average transverse magnetization mðtÞ probed at t ¼
n�, showing fluctuations that decrease for increasing L. (Lower
right panel) The transverse magnetization at the center of the
inhomogeneity, mjc ðt ¼ n�Þ, whose fluctuations persist for all L.

PRL 109, 257201 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 DECEMBER 2012

257201-4

http://dx.doi.org/10.1016/S0301-0104(97)00067-0
http://dx.doi.org/10.1016/S0301-0104(97)00067-0
http://dx.doi.org/10.1103/PhysRevA.81.022117
http://dx.doi.org/10.1103/PhysRevA.81.022117
http://dx.doi.org/10.1103/PhysRevB.83.214508
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1038/nphys2057
http://dx.doi.org/10.1038/nphys2057
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1038/nature06838
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.180601
http://dx.doi.org/10.1103/PhysRevLett.98.210405
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1103/PhysRevE.58.5355
http://dx.doi.org/10.1126/science.1068774
http://dx.doi.org/10.1126/science.1068774
http://dx.doi.org/10.1088/0305-4470/39/36/R01
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.200401
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.95.260404
http://dx.doi.org/10.1103/PhysRevLett.97.050402
http://dx.doi.org/10.1103/PhysRevA.74.041604
http://dx.doi.org/10.1088/1742-5468/2009/05/P05005
http://dx.doi.org/10.1103/PhysRevB.82.172402
http://dx.doi.org/10.1103/PhysRevA.84.013615
http://dx.doi.org/10.1103/PhysRevB.86.054410
http://dx.doi.org/10.1103/PhysRevB.86.054410


[25] H. Lignier, C. Sias, D. Ciampini, Y. P. Singh, A. Zenesini, O.
Morsch, andE.Arimondo,Phys.Rev.Lett.99, 220403 (2007).

[26] A. Eckardt, M. Holthaus, H. Lignier, A. Zenesini,
D. Ciampini, O. Morsch, and E. Arimondo, Phys. Rev. A
79, 013611 (2009).

[27] C. Sias, H. Lignier, Y. P. Singh, A. Zenesini, D. Ciampini,
O. Morsch, and E. Arimondo, Phys. Rev. Lett. 100,
040404 (2008).

[28] N. Gemelke, E. Sarajlic, Y. Bidel, S. Hong, and S. Chu,
Phys. Rev. Lett. 95, 170404 (2005).

[29] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and
E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).

[30] N. Strohmaier, D. Greif, R. Jöerdens, L. Tarruell,
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