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We study the spectrum of a one-dimensional Kitaev chain placed in a microwave cavity. In the off-

resonant regime, the frequency shift of the cavity can be used to identify the topological phase transition

of the coupled system. In the resonant regime, the topology of the system is sensitive to the presence of

photons in the microwave cavity and, moreover, for a large number of photons (classical limit), the

physics becomes similar to that of periodically driven systems (Floquet insulators). We also analyze

numerically a finite chain and show the existence of a degenerate subspace in the presence of the cavity

that can be interpreted as a Majorana polariton.
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Introduction.—Majorana fermions, or half-fermions,
have recently attracted tremendous attention as building
blocks of a topological quantum computer [1,2]. They
are predicted to emerge as excitations in several solid-state
systems, such as genuine two-dimensional (2D)p-wave
superconductors [3], or induced via superconducting
proximity effects in topological insulators [4–6] or one-
dimensional (1D) wires [7] as boundary zero modes. They
obey non-Abelian statistics, both in 2D [8] and 1D [9],
allowing for implementation of certain (nonuniversal) gate
operations required in quantum-computational schemes via
braiding of the Majorana fermions. Moreover, due to their
highly nonlocal character, the qubits built out of Majorana
fermions are insensitive to local parity-conserving per-
turbations, thus making them potentially robust against
physical noise errors [1,2,10,11].

The existence of Majorana states, however, has been
shown not only for static systems, but also for driven systems,
as zero modes in the so-called Floquet Hamiltonians [12], or
even, more recently, in dissipative systems [13]. These pro-
posals are based on the idea that driven systems can have
different topology from their static parents, albeit these are
not actual ground states. The ground-state perspective can,
however, be used even for the driven models, if instead of a
classical driving one considers the driving as having its own
quantum dynamics, such as in a high-Q electromagnetic
cavity. In particular, 1D microwave cavities have been
proven extremely successful in reaching the so-called
strong-coupling regime between photons and different types
of qubits [14], with very largeQ factors and a high degree of
control. Moreover, strong coupling between atomic gases
(e.g., in a Bose-Einstein condensate) and optical cavities
has been achieved with a high degree of coherence [15]. In
this Letter, we combine cavity QED with Majorana physics
in a 1D lattice model. We analyze the spectrum of a p-wave
lattice superconductor (Kitaev chain) coupled to a micro-
wave cavity and examine the topology of the combined
system. The spectrum is studied using a Dicke-like
Hamiltonian, in both the off- and on-resonant regimes.

The model.—In Fig. 1, we show a schematic of the
system under consideration: a Kitaev chain [1] inserted
in a 1D microwave cavity. The physical sites are depicted
by black ovals, while the constituent Majoranas are shown
inside by solid red circles. The hopping parameter t and the
chemical potential � can be modified by the (quantum)

cavity electric field ÊðzÞ, engendering a physical cou-
pling between electrons and photons. The associated wave-
length is assumed to be much larger than the 1D chain,
so that the electric field has no spatial dependence along
the latter.
The total Hamiltonian of the system, H ¼ H1D þ

Hint þHph, consists of

H1D ¼ � 1

2

XN�1

j¼1

ðtcyjþ1cj þ�cyjþ1c
y
j Þ þ H:c:��

XN
j¼1

cyj cj;

Hint ¼
�
�

2

XN
j¼1

cyjþ1cj þ H:c:þ �
XN
j¼1

cyj cj
�
ðay þ aÞ; (1)

FIG. 1 (color online). A sketch of the system. In blue (light-
gray) is the superconducting microwave cavity of length L,
which supports quantized electromagnetic modes. The
Majorana chain �1

1;2 . . .�
1;2
N is depicted inside the cavity with

the relevant parameters renormalized due to the coupling to the
cavity: Chemical potential � ! �þ ��̂ and hopping ampli-
tude t ! tþ �t̂ (with the hats denoting fluctuating quantum
contributions).
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and Hph ¼ !aya, where t is the hopping parameter, �

is the proximity-induced p-wave pairing potential [7], �
is the chemical potential, � is the electron-photon coupling
that shifts the chemical potential, and � accounts for
changes in the tunneling Hamiltonian linear in the photon
field (which would be present in a wire with a structural
asymmetry in the y direction; see Fig. 1). For simplicity we
are assuming that the pairing potential � is unaffected by
the photon field (see Supplemental Material [16], how-
ever). a (ay) stands for the photon creation (annihilation)
operator and ! is the frequency of the corresponding
photon mode (setting @ ¼ 1 throughout). The electric field
inside the cavity (corresponding to its fundamental har-

monic) is ÊðzÞ ¼ êy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!=Ld2c

p
sinð�z=LÞðay þ aÞ [14],

with L being the cavity length, d is the distance between
the center conductor and the ground conductors (see
Fig. 1), and c is the capacitance per unit length. Note
that the maximum of the electric field is at z ¼ L=2, where
the cavity-wire coupling is strongest. For the electrostatic
interaction of the wire with the cavity mode [� term in
Eq. (1)], we are supposing that the wire’s Josephson cou-
pling to a superconducting reservoir is strong enough
that the phase of the proximity-induced � is anchored
at a constant value corresponding to that of the reservoir.
We note that either � or � coupling above would be
sufficient for our purposes, but include both terms for
completeness.

Isolated wire.—We begin by recapping some of the
known results on the Majorana physics in 1D p-wave
superconductors. To keep the ideas transparent (but with-
out loss of generality), we assume in this section real

t ¼ �> 0 and � ¼ 0. Performing the substitutions �1
j ¼

cyj þ cj and �2
j ¼ iðcj � cyj Þ, in terms of Majorana opera-

tors, ð�i
jÞy ¼ �i

j, with i ¼ 1, 2, we can write the 1D wire

Hamiltonian simply as H1D ¼ �it
PN�1

j¼1 �2
j�

1
jþ1, with �1

1

and �2
N dropping out entirely. This guarantees a degenerate

ground state, which can be viewed as a qubit indexed

by �z � ðcyFcF � 1=2Þ. cF ¼ ð�1
1 þ i�2

NÞ=2 here is the
nonlocal fermionic operator defining the corresponding
zero-mode quasiparticle.

The existence of the Majorana end modes can be iden-
tified using bulk properties only, as they are a consequence
of the topology of the Brillouin zone. Using periodic
boundary conditions allows us to switch to the reciprocal

space using cj ¼
P

kck expð�ikjÞ= ffiffiffiffi
N

p
to write H 1D ¼P

k>0HBdGðkÞ, where

HBdGðkÞ ¼ �ðt coskþ�Þ�zk þ t sink�yk (2)

is the Bogoliubov–de Gennes Hamiltonian (restoring a
finite �), and the pseudospin �k ¼ ð�xk; �yk; �zkÞ, expressed
in terms of the Pauli matrices, acts on the particle-hole basis

(ck, c
y
�k). One can diagonalize this Hamiltonian ~HBdGðkÞ ¼

UyðkÞHBdGðkÞUðkÞ byUðkÞ¼ expð�i	k�
x
k=2Þ, which gives

~HBdG¼�
k�
z
k, with 
k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2þ�2þ2t�cosk

p
and 	k ¼

arctan½t sink=ðt coskþ�Þ�. The topological invariant
(winding number) that measures the number of edge modes
at each end of the wire reads [17]:

P ¼
I d	k

2�
(3)

and gives P ¼ 0 (1) for t < j�j (t > j�j), implying the
absence (existence) of Majorana end modes for a system
with open boundaries. We will now analyze this quantity in
the presence of the cavity.
Cavity-coupled wire.—Thecombined systemHamiltonian

can be mapped to the well-known Dicke model, namely
a set of spins interacting with the same photonic mode.
We start with the bulk system, later focusing on a finite
wire. In the continuum limit, we can write the interaction
Hamiltonian as Hint ¼ �

P
k�kðay þ aÞ�zk, with �k ¼ 1þ

ð�=�Þ cosk, which resembles the interaction Hamiltonian
between a photonic mode and a collection of spins:
the Dicke model. To analyze the effect of this term on
the spectrum, we consider both the high-frequency (! �
tþ j�j, i.e., much larger than the quasiparticle band
width) and the resonant (jt� j�jj<!< tþ j�j)
regimes.
Off-resonant coupling.—For a large cavity detuning,

! � tþ j�j, all the transitions are off diagonal, and we
can employ second-order perturbation theory using the
Schrieffer-Wolff formalism. This means diagonalizing the
Hamiltonian in a decoupled basis of the wire-cavity system

via a unitary transformation, ~H ¼ expðSÞH expð�SÞ ¼
H þ ½S;H � þOðS2Þ, with Sy ¼ �S being an anti-
Hermitian operator. We leave the details for the
Supplemental Material [16] and only mention that,
although in this situation the photon field cannot easily
change the topology of the system, one can utilize the
coupling to measure the topological phase of the system
[18] as well as the transition point. This is encoded in the
cavity frequency shift �! ¼ 2Ntð�=!Þ2�ð�=tÞ with

�ð�=tÞ ’ 2

N

X
k

�2
k sinkh�yki �

1

2�

Z �

0
dk�2

k sinkh�yki; (4)

where h� � �i means averaging over the (mean-field) ground
state of the 1D system. The perturbative treatment is justi-

fied for finite-size chains with �
ffiffiffiffi
N

p � !. Moreover, we
note that besides the frequency shift, the cavity leads to a
shift of the effective chemical potential, which is small in
the perturbative regime (see the Supplemental Material
[16]). In Fig. 2, we plot �ðxÞ and �2ðxÞ � d2�=dx2 as a
function of the chemical potential�.We see that while�ðxÞ
varies smoothly, �2ðxÞ becomes singular at the topological
transition point, the divergence being logarithmic in nature,
i.e., �2ð1� 
Þ / logj
j. The corresponding detection
method for the transition would thus provide an optical
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alternative to the more conventional transport-based pro-
posals such as that of Ref. [19].

In order to experimentally resolve the frequency shift,
the condition �!=! � Q�1 must be met, with Q being
the quality factor of the cavity. For a typical microwave
cavity, we take !	 10�4 eV and Q	 105–106 [14],
while for the tunneling matrix element t we choose
t	 0:1! (i.e., t	 10�5 eV), corresponding to the off-
resonant regime. This value of t can be achieved, for
example, in coupled quantum dots gate-defined in two-
dimensional semiconductor heterostructures [20]. If we
assume a 1D chain of N 	 100 sites, this results in a total
wire length of 	10 �m for a unit cell size of 	100 nm.
Note that since typical microwave cavities are milli-
meters long, they can easily accommodate several such
artificial wires. The potential drop V0 between the center
and the ground conductors is of order V0 * 1 �eV [14],
which sets itself as the upper bound for the value of �
(up to a geometric capacitive factor). Using these values,
we have optimistically �=!	 10�2, while for the corre-
sponding frequency shift we obtain [using �ð�=tÞ 	 1]
�!=!	 Nðt=!Þð�=!Þ2 	 10�3 � Q�1.

Resonant coupling.—In the resonant regime, it is pos-
sible to change the system topology at the single-particle
level of Eq. (1) depending on the cavity state. To see this,
we first simplify Hamiltonian (1) by neglecting the
‘‘counterrotating’’ terms that are off-resonant. Leaving
the details of the derivation for the Supplemental
Material [16], we show here only the final result [in the
rotated particle-hole basis as described below Eq. (2)]:
�Hint¼P

k�
y
kð�þk aþay��k Þ, where �y

k ¼ ��k sin	k. This
closely resembles the original Dicke Hamiltonian [21].
However, note that both the single-pseudospin splittings
as well as the couplings are k dependent (as opposed to the
model in the previous section). For each individual
k, the Hamiltonian reduces to the Jaynes-Cummings
Hamiltonian, which is block diagonal, with each block

being a 2
 2 matrix. Each of these blocks is associated
with a given value of the conserved quantity Ck ¼ �zk þ
aya, so that the 2
 2 block acts in the subspace fj "ki �
jni; j #ki � jnþ 1ig. This results in an effective two-band
Hamiltonian, which we can write in terms of a pseudospin
s ¼ ðsx; sy; szÞ (Pauli matrices) as follows:

HnðkÞ ¼ 1

2
ð
k �!Þsz þ

ffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
�y
k

2
sx; (5)

giving the spectrum EnðkÞ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!�
kÞ2þðnþ1Þð�y

kÞ2
q

=2.

Note that we neglected a constant shift �En ¼ ðnþ 1=2Þ!
of the two bands for a given Ck ¼ n. For each block
labeled by n, the spectrum has a band gap given by the
strength of the pseudospin-photon interaction �y

k timesffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
. This dramatically alters the initial spectrum 
k, as

n increases.
The single-particle picture described above is intimately

related to the recent developments on the topology in peri-
odically driven systems [12]. This connection is made con-
crete by considering the classical limit of a cavity prepared in
a coherent state with n � 1. Neglecting the photon-number
fluctuation, the single-electron spectrum then becomes

E�ðkÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!� 
kÞ2 þ�2

k

q
=2, with�k �

ffiffiffiffiffiffiffihnip
�y
k being

the classical Rabi frequency and hni the average number of
photons. The bulk topology can be correspondingly charac-
terized by Eq. (3), with 	0k � arctan½�k=ð!� 
kÞ�. We find

P0 ¼ 1 for t� j�j<!< tþ j�j, and zero otherwise.
Thus the electron-photon interaction in the cavity can endow
the combined system with an additional topology (here we
used P0 instead of P to emphasize the fact that the pseudo-
spins in the presence of photons are of different origin than in
the original Kitaev model).
The preceding results were found within a single-

particle picture, which in fact loses its precise meaning in
the many-body Dicke-model regime we are actually deal-
ing with. Namely, all the pseudospins �k simultaneously
interact with the same cavity mode, and the exact many-
body spectrum involves all of them. In order to simplify
further progress, we notice that the interacting Hamiltonian
admits a conserved global quantity C ¼ P

k�
z
k þ aya.

The simplest situation is when there are no photons in
the cavity and C ¼ �N=2 reaches its lowest possible
value. The combined eigenstate of the system is just the
product state jc 0

toti ¼ j +i � j0iwhere j +i � j # . . . #i, and
the energy E0 ¼ �P

k
k. For a finite number of photons
in the cavity the problem becomes progressively more
involved, and reasonably simple results can only be found
for n ¼ 0, 1, 2, as well as for n � 1 (mean field), with
n ¼ Cþ N=2.
We next wish to analyze the many-body ground state

(at a fixed-n subspace) when the cavity is populated with
photons. We focus only on the n ¼ 1 case, as this already
contains much of the relevant physics. In this case, the
wave function can be expanded as

FIG. 2 (color online). The dimensionless functions �ðxÞ quan-
tifying the microwave cavity frequency shift for an off-resonant
cavity, given in Eq. (4) (inset), and �2ðxÞ � d2�ðxÞ=dx2 as a
function of the parameter x � j�j=t. There is a strong signature
of the transition point x ¼ 1 (i.e., j�j ¼ t) in �2, which becomes
singular. The function �ðxÞ instead is continuous and monotonic,
decreasing with increasing the chemical potential �, the frequ-
ency shift being larger in the topological nontrivial phase.
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jc 1
toti ¼ aj +i � j1i þX

k

bkj +; "ki � j0i; (6)

where the coefficients a and bk are found by solving
the Schrödinger equation H jc 1

toti ¼ E1jc 1
toti [22]. The

simplest case is when � ¼ 0, so that 
k � t, and the

ground-state energy is found to be E1 ¼ �ðN � 1Þtþ
!=2� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�1 þ ðt�!=2Þ2p
, with �1 ¼

P
kð�y

kÞ2=N. (For

a finite � � 0, the result is more complicated, albeit
similar in nature.) This means the ground-state energy is
lowered at resonance compared to the noninteracting situ-

ation by the amount / ffiffiffiffi
N

p
. If the number of pseudospinsN

(or the strength of coupling �1) exceeds a critical value, the
absolute ground state thus becomes populated with pho-
tons. For example, in the homogeneous coupling described
above, E1 ¼ E0 for �1 ¼ !2=N at resonance. Although
this transition is not innately topological, it can switch the
topology of the system. Thus, at the critical coupling, the
system switches to a different ground state populated by
photons, and the topology, which is related to the appear-
ance of end modes, must be appropriately reexamined.
To that end, however, we need to calculate the total
many-body energy in a finite system, which is beyond
the single-particle bulk reasoning.

Finite system.—The Majorana states are actually bound-
ary modes, even though their existence can be inferred
from the bulk spectrum. We use the discrete lattice
model to numerically diagonalize the Hamiltonian in the
zero- and one-photon regimes, in order to explicitly iden-
tify zero modes. We have previously noted the existence
of Majorana end modes of a free chain for � ¼ 0. That
result is extended to � � 0, after finding an orthogonal
transformation M such that ~H1D ¼ MH1DMT ¼
i
P

N
m¼1 
m ~�

1
m ~�

2
m, with ~�p

m ¼ P
js

pr
mj�

r
j (here, j;m ¼

1; . . . ; N; p, r ¼ 1, 2), sprmjðt; �Þ being the elements of the

real orthogonal 2N 
 2N matrixM [1]. We can also write
~H1D ¼ P

N
m¼1 
mð~cym~cm � 1=2Þ, with ~cym ¼ ð~�1

m þ i~�2
mÞ=2,

and the eigenenergies 
n define the spectrum of the chain
which contain the zero modes for j�j< t.

Focusing on the topological regime, we now analyze
the evolution of the many-body zero mode as the first
photon is starting to populate the cavity. We assume the
cavity frequency to satisfy ðt� j�jÞ<!< 2ðt� j�jÞ,
which allows for the resonant transitions only from the
Majorana states to the gapped fermionic continuum. Note
that the parity of the system, p � �1

1 . . .�
2
N , is conserved,

i.e., ½p;H � ¼ 0, which means this is a good quantum
number even in the presence of the cavity. The cavity
may thus affect the splitting between the parities, but not
mix different parities. The interaction Hamiltonian can be

written in terms of the operators ~cymð~cmÞ instead of �k’s
which, in the rotating-wave approximation, becomes

Hint ¼ P
m�mF

Amfð~cF; ~cyFÞ~cymaþ H:c:, with Am the effec-

tive coupling and fð~cF; ~cyFÞ being a linear function in ~cF,

~cyF. As in the pseudospin model, here too we can use the

number of excitations C � P
m�mF

~cym~cm þ aya as a con-

served quantity for each parity p to find the spectrum and,
as an example, we calculate the energy of the system for
C ¼ 1. The corresponding eigenvalues for the two parities
are found from solving the eigenvalue problem similarly to
Eq. (6) (see the Supplemental Material [16] for details).
The splitting between the lowest-energy states of different
parities in the subspace C ¼ 1 is denoted by �Emaj ¼
j
gsþ � 
gs�j, while the gap to the continuum by �Egap ¼
minð
es�Þ �maxð
gs�Þ, with 
gsðesÞ� being the ground-state
(excited-state) energies. Note that such a definition can
be generalized for any C � 1, but not for C ¼ 0.
Figure 3 shows the energy splitting between the lowest

energy states, �Emaj, for C ¼ 0 and C ¼ 1, as well as the

splitting (gap) between these two states and the continuum,
�Egap for C ¼ 1. We see that in both cases the splitting

between the two states scales exponentially with the num-
ber of sites, although slower for C ¼ 1. Interestingly, the
energy gap �Egap saturates at a value / � for large N.

Physically, the resonant interaction brings the Majorana
modes into the continuum spanned by the C ¼ 1 states, but
as this interaction increases, precisely one state per parity
is pushed below the continuum and span a well-defined
two-dimensional degenerate subspace. These degenerate
modes are highly entangled electron-photon states, which
we call Majorana polaritons. Note that there is no Dicke-

like enhancement
ffiffiffiffi
N

p
� of�Egap for large N [see E1 below

Eq. (6)], since it is exactly canceled by the overlap of
the Majorana states with the continuum, which scales as

1=
ffiffiffiffi
N

p
. Nevertheless, for large enough �, the Majorana

polaritons are well defined.
The signatures of the Majorana polariton can be probed

in tunneling experiments, similar to the zero energy peaks
associated in the tunneling spectra with the presence of
Majoranas [23–25]. For example, when the ground state of

FIG. 3 (color online). Main: The energy splitting of the two
lowest-energy states, �Emaj, for zero (C ¼ 0) and one excitation

(C ¼ 1), as a function of the number of sites N. For these plots,
we used � ¼ 0:1, � ¼ 0:1, � ¼ 0, and ! ¼ 1, all in units of t.
Inset: The effective gap from the Majorana states to the
continuum, �Egap, for C ¼ 1, as a function of N (using here

� ¼ 0:2 to exaggerate trends).
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the coupled wire-cavity system is in the C ¼ 0 sector, a
tunneling of an extra electron can proceed either through
the Majorana mode (usual zero-bias peak), or by exciting
the C ¼ 1 Majorana polariton. The latter would then be
manifested by a finite voltage subgap, which can be thought
of as a polariton-assisted tunneling. Alternatively, the polari-
tonic state can be probed by the microwave transmission
through the cavity, in which case the C ¼ 1 subgap
collective mode would appear as a resonant transmission
channel. Besides that, there are other interesting issues
worth careful investigation, such as the consequences of
the coupling to the cavity on the braiding statistics, the
boundary modes in inhomogeneous wires, as well as the
fractional Josephson effect.

Summary.—To conclude, we analyzed the spectrum of a
1D Kitaev chain coupled to a microwave cavity in both off-
and on-resonant regimes. We showed that the combined
system exhibits highly entangled electron-photon degener-
ate ground states interpreted as Majorana polaritons. We
expect similar phenomenology to pertain to any other
physical realization of Majorana fermions that can be inte-
grated with a microwave cavity, such as Ising spin chains
[26], one-dimensional nanowires with strong spin-orbit
interaction in proximity to an s-wave superconductor [7],
as well as in the context of cold-atom physics [12].

This work was supported by the NSF under Grant
No. DMR-0840965, the Alfred P. Sloan Foundation, and
by DARPA. We gratefully acknowledge fruitful discus-
sions with Daniel Loss.
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