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The variable range hopping theory, as formulated for exponentially localized impurity states, does not

necessarily apply in the case of graphene with covalently attached impurities. We analyze the localization

of impurity states in graphene using the nearest-neighbor, tight-binding model of an adatom-graphene

system with Green’s function perturbation methods. The amplitude of the impurity state wave function is

determined to decay as a power law with exponents depending on sublattice, direction, and the impurity

species. We revisit the variable range hopping theory in view of this result and find that the conductivity

depends as a power law of the temperature with an exponent related to the localization of the wave

function. We show that this temperature dependence is in agreement with available experimental results.
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Chemical functionalization of graphene has been pro-
posed as one of the most promising methods to modify its
transport properties. The attachment of covalently bonded
atoms or functional groups opens the possibility to design
devices [1,2], open band gaps [3,4], and control the excel-
lent transport properties of its massless Dirac fermions [5].
Because graphene is essentially a two-dimensional elec-
tronic system, even small amounts of this functional group
can produce radical changes into its transport properties.
The temperature dependence of the conductivity of chemi-
cally functionalized graphene shows a peculiar behavior
that strongly suggests the importance of disorder. This
phenomenon is very general and has been observed with
hydrogen [6,7], fluorine [8,9], oxygen [10–12], and metals
[13]. In order to relate the experimental measurements with
microscopic properties, this anomalous temperature de-
pendence has been analyzed with a variable range hopping
(VRH) theory as formulated for semiconductors with expo-
nentially localized impurity states [14,15]. As a conse-
quence, the estimated localization length does not seem
to correlate with any reasonable characteristic length in
these systems. In the case of dilute fluorinated graphene,
the localization length is obtained to be 56 nm [9], while it
is estimated to be 90 nm in lightly silver-coated graphene
[13]. The VRH theory, as originally formulated by Mott, is
not applicable when the localization of the impurity states
is not exponential. For the case in hand, it has been
extensively discussed that the impurities form resonant
states and the low temperature conductivity as a function
of carrier concentration has been theoretically determined
in good agreement with experimental results [16–19].
Here, we determine the power law decay of these impurity
states and show that the exponent depends on the resonant
energy and approaches asymptotically the case of vacan-
cies [20,21]. The exponent is also anisotropic, displaying
strong dependence on the sublattice and on the direction.
We use our findings to reformulate the VRH theory, under

the assumption that there is a regime of temperature and
density where the jump between these impurity states is
incoherent, and determine a general behavior that explains
the measured temperature dependence of the conductivity
in these systems. The use of this reformulated theory
provides a method to determine the localization character-
istics of the impurity states in graphene.
We start by studying the system of a single impurity

atom on graphene with a tight-binding Hamiltonian of a
localized pz-orbital basis set jii for the � band of the
pristine graphene and jadi for the adatom,

H ¼ H0 þH0 (1)

H0 ¼ �t
X
n:n:

jiihjj (2)

H0 ¼ �adjadihadj þ Vadðj0ihadj þ H:c:Þ; (3)

where t is the hopping energy between nearest-neighbor
carbon atoms ( � 2:8 eV), �ad is the site energy of the
adatom, and Vad is the hopping energy between the adatom
and the carbon atom to which it is attached (j0i). This
model is often used to study the adatom-graphene system
[16,22,23]. Treating H0 as a perturbation, the T matrix is
given by

T ¼ H0 þH0G0H
0 þH0G0H

0G0H
0 þ � � �

¼ jadi Vad

1� V2
adG

00
0 Gad

0

h0j þ H:c:

þ jadi V2
adG

00
0

1� V2
adG

00
0 Gad

0

hadj þ j0i V2
adG

ad
0

1� V2
adG

00
0 Gad

0

h0j;
(4)

whereG0 is theGreen’s function ofH0,G
00
0 � h0jG0j0i, and

Gad
0 � hadjG0jadi ¼ ðE� �adÞ�1. The perturbed eigenstate

in the band continuum is given by the Lippman-Schwinger
equation
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jc ðEÞi ¼ jc 0ðEÞi þG0ðEÞTðEÞjc 0ðEÞi

¼ jc 0ðEÞi þ V2
adG

ad
0 h0 j c 0ðEÞi

1� V2
adG

00
0 ðEÞGad

0 ðEÞ
G0ðEÞj0i: (5)

For a certain energy E ¼ �r that satisfies the resonance
condition

Re ½1� V2
adG

00
0 ð�rÞGad

0 ð�rÞ� ¼ 0; (6)

the second term in Eq. (5) would be significantly enhanced
and jc 0ðEÞi can be ignored near the impurity site, which
gives

hi j c ð�rÞi / hi j G0ð�rÞ j 0i: (7)

Similar results have been obtained by other authors
[21,24,25]. This resonance state will have larger amplitude
near the adatom, but it never decays to zero for large distance
because of the contribution of the Bloch function jc 0ðEÞi.
Also, note that this expression only depends on the resonance
energy �r, which means the values of �ad and Vad in the
Hamiltonian only contribute to determine �r through Eq. (6),
and we can study the effects of different adatom species by
varying �r.

The decay of the wave function of the impurity state can
be studied by investigating the lattice Green’s functions
(GFs) hi j G0ð�rÞ j 0i, which are determined mostly from
contributions from the two Dirac points (K, K0) in the
Brillouin zone when they are evaluated at energies near
zero. Integrating around the two Dirac points rather than
the whole BZ and assuming a completely linear band, the
GFs have been calculated and given in terms of Hankel
functions [26–28] (labeled A for sites in the same sublattice
as the impurity and B for sites in the opposite sublattice),

hr; A j G0ðEÞ j 0i ¼ �i�
AcE

4v2
F

Hð1Þ
0

�
Er

vF

�
(8)

hr; B j G0ðEÞ j 0i ¼ ��
AcE

4v2
F

Hð1Þ
1

�
Er

vF

�
; (9)

where Ac is the area of a unit cell in graphene and vF is the

Fermi velocity. The amplitude of the Hankel functionsHð1Þ
0

and Hð1Þ
1 decay isotropically, but the GFs also depend on

the prefactors

� � e�i�=3ðeiK�r��r � eiK
0�rþ�rÞ (10)

� � eiK�r þ eiK
0�r; (11)

where �r ¼ tan�1ðry=rxÞ when the x axis is taken to be

along K0 �K. The form of the argument of the Hankel
function makes two types of approximations feasible. For
an impurity with a small �ad or a large Vad (e.g., a vacancy),
the resonance energy �r solved from Eq. (6) will be small,
which means we can do small argument expansion to the
Hankel function. This gives a resonance state that has zero
amplitude on the A sublattice sites and decays as r�1 for

the B sites [20,28]. On the other hand, when �r is not
vanishingly small, we are more interested in the long-range
decaying behavior, and it is necessary to do large argument
expansion, which gives

��������Hð1Þ
�

�
Er

vF

���������¼
�
2vF

�Er

�
1=2

�
1þ ð4�2 � 1ÞvF

8Er
þ � � �

�
:

(12)

Given enough distance, both the A-site and the B-site
amplitude will fall off primarily as r�0:5.
The decay behavior is further elucidated by evaluating

the GFs directly. The method used here to obtain the GFs
for the honeycomb lattice follows a calculation for square
lattice [29], in which the lattice GFs are calculated from
larger to smaller distances from the impurity. This is done
to avoid a diverging term that originates from numerical
instabilities and also satisfies the GF equation of motion
[30,31].
The calculated GFs (amplitudes of the resonance state)

are plotted in Fig. 1, where in the insets the amplitude of
the GF on a certain site is represented by the radius of the
circle that is drawn on that site, and the results mostly
confirm the approximations. Firstly, the amplitude of the
resonance state wave function depends on the resonance
energy �r, and the energy-dependent behaviors of the two
sublattice sites are drastically different. This is clear from
Fig. 1(a) (�r ¼ t=300) and Fig. 1(b) (�r ¼ t=6). At low �r,
the resonance state is almost exclusively on the B sublat-
tice sites. The amplitudes on the A sites increase quickly
while the B sites stay relatively the same with increasing
�r, and the two sublattice sites have comparable ampli-
tudes at �r ¼ t=6. Secondly, the wave function amplitude
decays with power law

jc ðrÞj ¼ c 0

rs
; (13)

although the exponent s depends on resonance energy,
sublattice, and direction. For the A sites [Fig. 1(b)], the
sites that form a triangular lattice with the impurity site
(marked with red) have larger amplitudes than the other
sites (marked with black) when they are approximately the
same distance to the impurity. This can be explained with
the prefactor � in Eq. (8), which evaluates to 2 for the
former group of sites and�1 for the latter. The two groups
give almost perfect linear fits in a log-log plot close to the
impurity with essentially the same decay exponent s, while
the second group of sites deviates from the linear fit at
larger distance. For the B sites, the decay is anisotropical
and power laws can be seen in many directions when �r is
small [Fig. 1(a)]. This behavior has been obtained with
approximations to the GFs previously by Nanda et al. [28],
and our calculation confirms their result. At higher �r, the
decay in the B sites in the armchair direction is the slowest
(and thus contributes the most when calculating overlap)
and still obeys very good power laws, while the other data
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sets start to deviate. Deviations from power laws in both
the A sites and the B sites are not explained in the approxi-
mated GFs, and they happen at a smaller distance for larger
�r. Therefore, it is possibly a result of nonzero energy and
contributions from k points other than the two Dirac points.
The decay exponents for the A sites and the armchair
direction of the B sites are plotted in Fig. 2 with several
resonance energies. As predicted by the approximations,
the B sites’ decay exponent is 1 at zero resonance energy
[20,28], and both exponents approach 0.5 with large reso-
nance energy. Finally, we would like to note that the
amplitude of the wave function calculated with GFs agrees

with evaluation of the GFs with elliptic integrals [30], the
results in Ref. [23] for vacancies (�r ¼ 0), as well as the
amplitude of the eigenfunction near the impurity (r � 10a)
obtained from direct diagonalization of the Hamiltonian
with periodic boundary conditions.
The power-law decay and the Bloch-wave behavior at

large distance both indicate that the impurity state in
graphene is not nearly as localized as a typical midgap
state in a semiconductor, which decays exponentially. The
resonance states here are not normalizable, and it would
be difficult to define a localization length. In view of the
simplicity and the extensive usage of the VRH theory, it is
necessary to investigate the impact of a power-law-
decaying impurity state on the hopping conductivity result.
Similar to VRH, we will assume that the density of

impurities is low enough so that the average distance
between impurities is longer than the phase-coherent
length and that coherent scattering from multiple centers
can be ignored. The derivation of VRH is outlined in
Refs. [14,32]. By simply replacing the overlap with
Eq. (13), the hopping probability between two impurity
sites i and j can be written as

Pij ¼ �ij

1

r2sij
exp

�
� �ij
kT

�
; (14)

where rij and �ij are the distance and energy difference

between the two states, respectively. �ij is a prefactor that

comes from the coupling between electrons and phonons.
It depends on �ij and rij with power laws and is thus

ignored in the original VRH [32]. Assuming a smooth
density of states near the Fermi level (gð�FÞ), �ij, and rij
are related by

2gð�FÞ�ij ¼ r�d
ij ; (15)

FIG. 1 (color online). Amplitude of the resonance state at different resonance energies. (a) �r ¼ t=300. The amplitudes on the A
sublattices vanish. (b) �r ¼ t=6. The insets show the amplitudes represented by the radii of circles on the graphene honeycomb lattice.
In both plots a circle symbol represents an amplitude on a B site, which is in the direction indicated by a line with the same color in the
insets. A square symbol represents an amplitude on an A site, which has a circle drawn with the same color in the inset. The center dot
(blue) is where the adatom is attached. a is the nearest neighbor carbon-carbon distance.

FIG. 2 (color online). The characteristic decay exponents of
the two sublattice sites vs the resonance energy. For the A sites,
the exponent is taken from the sites that forms a triangular lattice
with the impurity site, similar to the top line in Fig. 1(b). For the
B sites, the exponent is taken from sites in the armchair direc-
tion, similar to the green line in Fig. 1.
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where d is the dimension of the system. Taking the occu-
pation of the two states into account, we obtain the con-
ductance between two impurities as [32,33]

�ij ¼ e2

kT
Pij; (16)

where e is the charge of an electron. The conductivity of
the bulk is assumed to be proportional to �ij between the

most conductive pair of impurities, which corresponds to
the maximum of �ij when varying rij or �ij. This leads to a

power-law temperature dependence for the conductivity,

� / T	; with 	 ¼ 2s

d
þ s0; (17)

where s0 originates from the prefactor �ij=T. For hydro-

genic states, it is estimated to be ð�� 2Þ=ðdþ 1Þ, where �
is the critical exponent for the size of the percolating
cluster [32]. In two dimensions, � ¼ 1:34 [34] and

s0 ¼ �0:22: (18)

The analysis that gives this exponent cannot be easily
generalized, but we can still assume s0 to be a constant
that does not depend on the details of the impurities.

Equation (17) can be used to fit existing experimental
data of the systems of hydrogen adatoms [6,7] and fluorine
adatoms on graphene [9] and the extracted parameters are
shown in Table I, along with fits of the original VRH. The
fits are done to all the data points presented in the refer-
ences. Assuming Eq. (18), the exponents extracted from
the fittings are within the reasonable range that is expected
from this theory. In both experiments where the effect of
gate voltage is studied, the exponent decreases when the
gate voltage moves away from the charge neutrality point,
effectively shifting the Fermi energy so that on average
impurity states with higher resonance energies participate
in the conduction. This is consistent with the behavior of
the B sites’ decay exponent (Fig. 2), while the amplitudes
on the A sites are too small to be relevant in the range of the
experimental gate voltage.

The conventional VRH and Eq. (17) have very similar
curvatures in this temperature range and all the data can fit
both equations fairly well. Comparing the squared corre-
lation coefficients (�) for the linear fits, the data for
fluorinated graphene at low gate voltage fit the original
VRH better, while the power-law dependence describes all
the other data sets better. The currently available data
cannot convincingly exclude either equation as the con-
duction mechanism, especially considering the VRH
requires low temperature but all the data go up to room
temperature. We expect more continuous and accurate
experimental data at low temperature to prove our proposal
of a power-law temperature dependence.
In summary, we have shown that the impurity state in

graphene is a resonance state in the band continuum, and it
is localized only as power-law functions with exponents
generally below 1. This means that the VRH theory which
assumes exponential localization is not directly applicable
to disordered graphene. Replacing the overlap term in
VRH, a theory for the temperature dependence of conduc-
tivity is derived which fits the existing experimental data.
However, since the states are largely delocalized, the hop-
ping picture of conduction may not be the most appropriate
approach to model the transport properties of these sys-
tems. Further investigation into this problem is needed to
develop a theory that includes both the impurity states and
the extended unperturbed states.
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