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Non-neutral plasmas can be trapped for long times by means of combined electric and magnetic fields.

Adiabatic cooling is achieved by slowly decreasing the trapping frequency and letting the plasma occupy a

larger volume. We develop a fully kinetic time-dependent theory of adiabatic cooling for plasmas trapped

in a one-dimensional well. This approach is further extended to three dimensions and applied to the

cooling of antiproton plasmas, showing excellent agreement with recent experiments [Gabrielse et al.,

Phys. Rev. Lett. 106, 073002 (2011)].
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Introduction.—Non-neutral plasmas (consisting purely
of electrons, ions, or positrons) have received much atten-
tion in the last few decades [1], particularly because very
accurate table-top experiments can be devised to study
their properties. Non-neutral plasmas can be confined for
much longer periods of time (several days) compared to
quasi-neutral plasmas and are more easily cooled down to
low temperatures. Their confinement is usually achieved
by means of a cylindrical device (Penning-Malmberg trap),
in which an axial magnetic field ensures the radial con-
finement while the axial trapping is provided by a set of
appropriately distributed electrodes.

The creation and confinement of non-neutral plasmas
consisting of positrons or antiprotons ( �p) is a major issue
for the production of significant amounts of neutral anti-
matter in the form of antihydrogen ( �H) atoms. Spectacular
advances in this field have been achieved in recent years by
several international collaborations, such as ALPHA [2],
ATRAP [3], and ASACUSA [4]. The motivation of this
recent and exciting research is to compare the physical
properties of matter and antimatter, for instance the spec-
tral lines of antihydrogen or its behavior under the influ-
ence of gravity. The recently established international
collaboration GBAR aims at determining the gravitational
acceleration of �H atoms by letting them fall in the gravi-
tational field of Earth [5]. For the same purpose, the AEGIS
Collaboration proposes to measure the shift of the inter-
ference pattern of free-falling antihydrogen atoms going
through a series of gratings [6].

The �H atoms are usually trapped in a magnetic well,
where the effective confining potential has a depth of about
1 K in temperature units [2]. As the atoms are created
with much higher energies, their cooling constitutes a
major challenge to achieve an effective confinement. The
ALPHA collaboration [2] recently reported confining sev-
eral hundred �H atoms for more than 15 min. The antipro-
tons were first precooled by interacting with cold electrons
and then brought down to 40 K by evaporative cooling [7].
Unfortunately, during evaporative cooling most charged
particles are lost, leading to a lower �p density. In contrast,

using an adiabatic cooling technique, Gabrielse et al. [8]
managed to cool down 3� 106 antiprotons to about 3 K,
with almost no losses observed.
Adiabatic cooling is achieved by lowering the trapping

frequency ! that confines a non-neutral plasma within a
one-dimensional (1D) harmonic well,UðzÞ ¼ m!2ðtÞz2=2.
If the plasma density is low enough, one can adopt a
single-particle approach. For a slowly varying frequency,
the action E=! is conserved, so that the energy (and the
temperature) of the plasma decreases linearly with the
frequency, i.e., T �!. When the plasma density is high
enough, the effect of the space charge cannot be neglected
and the single-particle approach breaks down. Li et al. [9]
have developed a thermodynamic theory of adiabatic
cooling for an ion cloud in a Penning trap, assuming
that the ions always remain at Maxwell-Boltzmann
equilibrium [10].
The purpose of this Letter is to develop a fully kinetic

description of the adiabatic expansion and cooling of a
non-neutral plasma, without making any assumptions on
its thermodynamic properties except for the initial equilib-
rium. The results will be compared to recent experiments
from the ATRAP Collaboration [8].
Kinetic model in one dimension.—In most experiments,

the charged particles are confined in a harmonic potential
well, with a strong magnetic field along the axial (parallel)
direction z, which ensures radial (perpendicular) confine-
ment. It is then reasonable to restrict our analysis to a 1D
geometry along the z axis. Nevertheless, particle collisions
can couple the axial and radial motion, leading to energy
equipartition between the parallel and perpendicular tem-
peratures. Thus, from a thermodynamic point of view, the
expansion is 1D when collisions are rare, and 3D when
collisions are dominant [11].
We first concentrate on the collisionless 1D regime,

where the antiproton plasma can be described by the
Vlasov-Poisson equations:
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where �e and m are the antiproton charge and mass, Ez is
the parallel self-consistent electric field, �? is the 2D
number density in the perpendicular plane, and n ¼R
fdvz is the 1D density along z. The initial condition is

computed self-consistently by assuming that the plasma is
at thermal equilibrium with temperature T0.

If the frequency ! decreases in time, the plasma will
experience an expansion. In order to follow this expansion,
it is useful to use the scaling techniques introduced in
Refs. [12,13]. We define the new phase space variables
ð�;�Þ and the new time � in the following way

z ¼ CðtÞ�; dt ¼ A2ðtÞd�; vz ¼ ðC=A2Þ�þ _C�: (3)

Our aim is to find the ‘‘right’’ scaling transformations such
that the plasma will be frozen in the scaled variables. Then,
the scaling factor CðtÞ will inform us on the expansion law,
which in turn can be related to the evolution of the plasma
temperature.

We also need to transform the distribution function
in order to guarantee the invariance of the total number
of particles, fðz; vz; tÞdzdvz ¼ Fð�;�; �Þd�d�. Finally,
the scaled electric field is defined as Eð�; �Þ ¼ Ezðz; tÞ in
order to keep Poisson’s equation unchanged: @�E ¼
� e�?

"0

R
Fd�. In the scaled variables, the Vlasov equation

reads as follows:
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where the scaled acceleration is

Q ¼ �A4eE
mC

�
 
A4 €C

C
þ!2A4

!
�þ 2A2

 
_A

A
�

_C

C

!
�: (5)

Let us now introduce some specific expressions for
the scaling coefficients: AðtÞ ¼ ð1þ�tÞ� and CðtÞ ¼
ð1þ�tÞ�. In addition, we postulate a similar form
for the time-dependent trapping frequency: !ðtÞ ¼
!0ð1þ�tÞ��, where �, �, and � are real positive num-
bers. Here, �> 0 is a parameter that determines the
rapidity of the change of the trapping frequency. With these
prescriptions, the scaled acceleration becomes

Q ¼ �ð1þ�tÞ4���eE=m

� ½�ð�� 1Þ�2ð1þ�tÞ4��2 þ!2
0ð1þ�tÞ4��2���

þ 2�ð�� �Þð1þ�tÞ2��1�: (6)

The idea is to choose the parameters � and � so that as
many terms as possible in Eq. (6) become time indepen-
dent. For all values of �, we need to choose � ¼ �=4 so
that the coefficient of the first term is constant. Then, two
cases clearly appear. For � � 1 one should take � ¼ 2,
whereas for �< 1 one should have � ¼ 2�. Note that for
� ¼ 1 all coefficients become constant.

The transformed equations describe a ‘‘virtual’’ physi-
cal system made of charged particles interacting through
(i) the self-consistent electric field E, (ii) a harmonic
field composed of a constant and a decreasing-in-time
term, and (iii) a friction field, either constant or decreas-
ing with time. In the scaled phase space, such a system
will relax to a steady state with zero velocity (because
of the friction) and uniform spatial density n0 (defined
by e2�?n0=m"0 ¼ !2

0), thus creating a linear repulsive

force E that exactly cancels the second term of
Eq. (6).
The approach to the asymptotic solution is nicely seen in

Fig. 1, where we plot the initial and final densities. The
asymptotic profile is dictated by the structure of the scaled
equations (4) and (6) and thus constitutes a universal
attractor towards which any initial condition (not neces-
sarily an equilibrium) should converge. This is true even
for rapid variations of !ðtÞ, thus generalizing results that
rely on assumptions of thermal equilibrium and adiabatic
expansion [9].
As the system becomes frozen in the � space, the

expansion law is determined by the scaling function CðtÞ
and hence the exponent �: z� t2� for � � 1 and z� t2 for
�> 1. It is easy to understand why the value� ¼ 1 plays a
pivotal role: the expansion is adiabatic when j _!=!j � !,
which implies �� � !0ð1þ�tÞ1��. When �> 1, the
previous expression cannot be satisfied for all times. In
contrast, for � � 1, the expansion is always adiabatic,
provided that ��<!0. In the following we will concen-
trate on such adiabatic regimes.
In the scaled space, the density approaches asymptoti-

cally the value nð�Þ ¼ n0 [14]. Using the conservation of
the total number of particles nðzÞdz ¼ nð�Þd� to transform
back to real variables, one finds that the density behaves
as nðz; tÞ ¼ n0ð1þ�tÞ�2�. Finally, using the isentropic
law for a weakly coupled plasma T � n��1 [with � ¼
ðdþ 2Þ=d ¼ 3 in 1D] and the expression for !ðtÞ, one
obtains the temperature as a function of the frequency:
T=T0 ¼ ð!=!0Þ4.
An important consequence is that the plasma frequency

behaves as !pðtÞ¼ ½e2�?nðtÞ=m"0�1=2¼!0=ð1þ�tÞ��
!ðtÞ. In other words, the plasma frequency approaches the

FIG. 1. Density profiles in the scaled space at the beginning
(dashed line) and at the end (solid line) of the simulation.
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harmonic frequency and remains locked to it for the rest of
the evolution.

The relation T �!4 represents an asymptotic law.
However, some transient regime must exist in the case of
low-density plasmas, for which the Coulomb interaction is
almost negligible. In this case, the expansion should ini-
tially follow the single-particle law T �!. In contrast, for
high-density plasmas the asymptotic law should be
observed from the beginning of the evolution. These two
regimes can be characterized by the total number of parti-
cles in one dimension,N ¼ R

fdzdvz (normalized to n0	0,

where 	0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT0=m

p
=!0).

In order to check the above conjectures, we performed
numerical simulations of the nonlinear Vlasov-Poisson
equations (1) and (2), starting from self-consistent equilib-
ria characterized by different values of N. The equations
were solved in the scaled phase space ð�;�Þ using an
Eulerian Vlasov code [15].

In Fig. 2, we plot the temperature at the center of the
plasma cloud (z ¼ 0) against the inverse harmonic fre-
quency, for � ¼ 1, � ¼ 0:02!0, and three values of N.
As expected, for N < 1 the temperature evolves first as !
(single-particle transient) and later as !4 (self-consistent
asymptotic behavior). For N > 1, the asymptotic behavior
is observed right from the start. The same pattern was
observed for runs with �< 1.

Extension to three dimensions.— The above model,
Eqs. (1)-(2), is a mean-field approximation that neglects
binary collisions between particles. However, collisions
are important in antiproton cooling experiments and their
main effect is to drive the system towards energy equipar-
tition between the parallel and perpendicular motion.
In order to model collisions, we add a relaxation term on
the right-hand side of Eq. (1): 

@f

@t

!
coll

¼ �
coll

 
f� ne�mðvz�uÞ2=2kBT?

ð2�kBT?=mÞ1=2
!
; (7)

where uðz; tÞ ¼ R
fvzdvz=n, T?ðtÞ is the perpendicular

temperature, which obeys the following equation:

dT?
dt

¼ �
coll

2
ðT? � TkÞ; (8)

and kBTkðtÞ ¼ m
R
fð0; vz; tÞv2

zdvz=nð0; tÞ is the parallel

temperature at the center of the plasma. A factor 1/2
appears in Eq. (8), but not in Eq. (7), because the perpen-
dicular motion is associated with two degrees of freedom.
In one dimension, the temperature depends on the fre-

quency as T �!4 and the density as n�!2, implying that
!pðtÞ �!ðtÞ. This relation does not depend on the dimen-

sionality of the system and can be extended to the 3D case.

Using the isentropic law in three dimensions, T � n2=3,

yields the expression T �!4=3. This is the law that we
expect to observe in the collisional 3D regime.
In order to check this conjecture, we solve Eqs. (1), (2),

(7), and (8) using the same scaling techniques introduced
above. Notice that in Eq. (6) we have two free parameters,
namely, � and �. The latter determines the expansion of
the plasma density and should be kept the same as in the
1D simulations, i.e., � ¼ 2� for the adiabatic regime. The
exponent � can be chosen so that, in the scaled variables,
the distribution function is bounded in velocity space.
The relationship between the temperature in the real and

scaled spaces is as follows: bTð�; �Þ ¼ ðA4=C2ÞTðz; tÞ. If
T �!4=3, then, in order for the scaled temperature bT to
remain constant, we need to take � ¼ 4�=3. In addition,
by choosing � ¼ 3=8 several terms in Eq. (6) are algebrai-
cally simpler, for instance the friction term becomes time
independent. With these parameters, the distribution func-
tion should remain bounded in a finite phase-space volume
in the scaled variables, thus greatly simplifying the nu-
merical integration without any loss of generality as to the
physics. Equations (7) and (8) are also scaled using the
same technique.
The numerical results confirm our conjecture. The case

depicted in Fig. 3 represents a simulation with � ¼
0:02!0, N ¼ 30, and 
coll ¼ 0:001!0. Initially, when the
collision term has not yet had time to act, the parallel
temperature follows the 1D law Tk �!4, while T?
remains almost constant. On a longer time scale, however,
the collisions drive the system towards energy equiparti-

tion, and both temperatures start decreasing as !4=3.

FIG. 2. Plasma temperature as a function of the inverse of the
harmonic frequency ! in the 1D regime, for N ¼ 10 (a), N ¼
0:3 (b), and N ¼ 0:1 (c). The dashed straight lines have slopes
�1 and �4.

FIG. 3 (color online). Parallel, perpendicular, and total tem-
peratures as a function of the inverse of the instantaneous
trapping frequency !ðtÞ in the 3D regime. The straight lines
have slopes �4 and �4=3.

PRL 109, 255005 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 DECEMBER 2012

255005-3



For larger collision rates, the law T �!4=3 is observed
from the beginning of the simulation. The total temperature
is defined as T ¼ 1

3Tk þ 2
3T?.

Comparison to experiments.— We now have all the
elements to perform a detailed comparison with the recent
experimental results of Ref. [8], where N �p ¼ 5� 105 anti-

protons were confined in a cylindrical trap of volume V ¼
�R2Lz, with radius R 	 2 mm and length Lz 	 10 mm.
The axial magnetic field was B ¼ 3:7T. Each point on
Fig. 3 of Ref. [8] corresponds to a different experiment
in which the harmonic trap frequency is lowered from
!0=2� (which ranges between 90 kHz and 3 MHz) to
the final value !=2� ¼ 75 kHz. During the ensuing ex-
pansion, the antiproton plasma cools down from T0 ¼ 31K
to a final temperature T. The total duration of the cooling
is tf ¼ 100ms.

The experiments show that the final temperature behaves

as T �!1:2, which is rather close to the law T �!4=3 that
arises from our 3D model. In addition, the final tempera-
ture levels off at a value T 	 3:5K and does not decrease
any further for frequencies above !0=2� ¼ 500 kHz. This
unexpected saturation is still unexplained and was tenta-
tively attributed by the authors to intrinsic limits on the
measuring apparatus, to some source of technical noise,
or to some unspecified new physics appearing at high
frequencies.

In order to perform our simulations, we need to specify
three dimensionless parameters, namely N, �=!0, and

coll=!0. In 3D, N ¼ R

fdzdvz is related to the total

number of antiprotons by the expression: N ¼ N �p=

ðn0	0�?�R2Þ. The parameter �, which determines the
rapidity with which the harmonic frequency decreases,
can be expressed in terms of the cooling time tf by using

the definition of !ðtÞ.
Finally, the collisional equipartition rate was deter-

mined using the detailed calculations of Ref. [16]. For

an unmagnetized plasma, the rate is roughly 
unmag ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=m

p ðN �p=VÞb, where b ¼ e2=ð2�"0kBTÞ, which

yields 
unmag 	 3300 s�1 for the experimental parameters

of interest here. The effect of the magnetic field is to reduce
substantially the collision frequency. For B ¼ 3:7T, the
correction factor can be estimated to be around 0.2 [16],
yielding 
coll 	 660 s�1.

To compare with the experimental results, we performed
a set of runs for different values of!0, which correspond to
different dimensionless parameters. Two such runs are
displayed as solid lines on Fig. 4. In the same figure, we
show the final temperature after adiabatic cooling as a
function of the initial trapping frequency. The agreement
between the simulations and the experimental results from
Ref. [8] is excellent. Not only is the slope of the tempera-
ture curve Tð!0Þ correct for small values of the harmonic
frequency, but the leveling off at high frequencies is also
reproduced with great accuracy.

Physically, this saturation is linked to the strength of the
collision rate relative to !0. On the left of the diagram,

coll=!0 is relatively large, so that equipartition occurs
early and the corresponding points are roughly aligned
along a line with slope 4=3 (see the curve for
!0=2� ¼ 470 kHz on Fig. 4). On the right of the diagram,

coll=!0 is smaller and the temperature undergoes a tran-
sient with shallower slope (see curve for !0=2� ¼ 2MHz
on Fig. 4 and also the total temperature curve on Fig. 3),
during which the parallel and perpendicular temperatures
have not yet equilibrated. This results in a final total
temperature that is higher than what could be expected

from the law T �!4=3. Indeed, by artificially increasing

coll by a factor 5, we could lower the final temperature to
roughly 2 K (red triangle in Fig. 4). Since the collision
rate is very sensitive to the external magnetic field, this
suggests that lower temperatures may be achieved by
reducing the latter, a conjecture that could easily be tested
experimentally.
In summary, we have presented a fully kinetic theory for

the adiabatic cooling of charged particles both in one and
three dimensions. Our model, which does not make any
explicit thermodynamical assumptions nor requires any
fitting parameters, was capable of reproducing with great
accuracy the results of recent experiments of the ATRAP
Collaboration [8].
We thank Dr. W. Oelert and Dr. P. Perez for providing
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