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Electron vortices are shown to possess electric and magnetic fields by virtue of their quantized orbital

angular momentum and their charge and current density sources. The spatial distributions of these fields

are determined for a Bessel electron vortex. It is shown how these fields lead naturally to interactions

involving coupling to the spin magnetic moment and spin-orbit interactions which are absent for ordinary

electron beams. The orders of magnitude of the effects are estimated here for ȧngström scale electron

vortices generated within a typical electron microscope.
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The last few years have seen the advent of electron
vortices (EVs) as Schrödinger quantum states representing
twisted de Broglie–type waves that can be created inside an
electron microscope. They were first suggested on a theo-
retical basis by Bliokh et al. [1] and experimental reports
by several groups [2–5] have established EVs as quantum
states with well defined properties. They bear some resem-
blance to optical vortices (OVs), specifically in that they
too carry orbital angular momentum (OAM) l@ associated
with the azimuthal phase factor expðil�Þ in their wave
function, where l is the winding number [6–9]. However,
in addition to the OAM properties, EVs carry electron
spin- 12 angular momentum and are endowed with electric

charge e. Recent studies have confirmed that the two types
of vortices differ considerably in their interactions with
matter, most notably in spectroscopy.

The first experimental work using EVs in electron en-
ergy loss spectroscopy (EELS) was carried out recently
by Verbeeck et al. [3] who reported a clear dichroic signal
emerging from the interaction of EVs of opposite winding
numbers l ¼ �1 with magnetized iron film samples. The
physics of the Verbeeck et al. experiment has subsequently
been explored by Lloyd et al. [10] who showed that EVs
are capable of exchanging OAM with the internal dynam-
ics of an atom undergoing electric dipole transitions. Lloyd
et al., however, came to the conclusion that EV beams with
opposite winding numbers l ¼ �1 should have identical
EELS strengths for a nonmagnetic film and so the observed
dichroism effect must be due to differences in the popula-
tions of the magnetic levels participating in the transitions.
Nevertheless, the primary finding of Lloyd et al.’s work,
namely, that EVs do engage with the internal dynamics of
matter in processes involving electric dipole transitions is
significant and is in sharp contrast with the case of optical
vortices which have been shown not to engage with the
internal dynamics in electric dipole transitions [11,12].

Research to uncover the fundamental physics of EVs has
only just begun. Recent work by Bliokh et al. [13] consid-
ered relativistic electron vortices and analysed the role of
spin and OAM and their coupling in that context. The aim

of this Letter is to point out some fundamental properties of
EVs associated with their orbital motion. The fact they
carry electric charge e, along with their wave function c ,
implies that they are endowed with electric and magnetic
fields associated with their charge and current distribu-
tions. We explore how the vortex fields would couple to
the spin magnetic moment and show that they are also
responsible for an interaction between the spin and the
OAM of the vortex, so giving rise to a spin-orbit effect in
this context.
It is well known that spin-orbit interactions play a sig-

nificant role in atomic, molecular, and solid state physics.
Albeit a relativistic correction, the spin-orbit coupling is
strong in these contexts due to the strong Coulomb fields
responsible for the bonding. Recent developments have
confirmed that it is now possible to generate atomic scale
EVs, so-called ȧngström EVs [14] since they are localized
in an ȧngström size region.
The electron vortex is characterized by a wave function

c ðr; tÞ. Since we are concerned with EVs generated inside
an electron microscope, where the typical energy is of the
order 200 keV, the EV is a solution of the scalar Helmholtz
equation emerging from the Schrödinger equation in cylin-
drical polar coordinates, namely,

r2c ðr; tÞ þ 2m0W 0

@
2

c ðr; tÞ ¼ 0; (1)

where W 0 is the energy eigenvalue and m0 is the electron
rest mass. We concentrate on the Bessel-type solution of
this equation and write for the vortex wave function in
cylindrical polar coordinates r ¼ ð�;�; zÞ:

c ðr; tÞ ¼ NlJlðk?�Þeikzzeil�e�i!t; (2)

where the radial function Jlðk?�Þ is the Bessel function of
order l where l is the winding number. The wave numbers
k? and kz stand for in-plane and axial wave vector varia-
bles respectively, and ! ¼ W 0=@. As pointed out earlier,
the vorticity resides in the phase factor eil� and Nl is the
normalization constant which follows straightforwardly in
the form
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Nl ¼ ð2�DI lÞ�1=2; (3)

where the beam length D arises in the z integration for
a beam extending between �D=2 and D=2 and I l is
defined as

I l ¼
Z �l;1

0
J2l ðk?�Þ�d�: (4)

Strictly speaking, the upper limit of the integration in
Eq. (4) should be infinity. Implied in Eq. (4) is the assump-
tion that the production of a Bessel vortex of winding
number l is realized using a holographic mask of finite
width, in which case we shall assume that the effective
region of the vortex cross section only spans the first zero
�l;1 of the Bessel function so that we can write

�l;1 ¼ �l;1

k?
(5)

as the radius of our Bessel vortex. This enables a connec-
tion of the theory with the measurable experimental para-
meters, notably the axial electric current Iz of the electron
vortex. In a conventional electron microscope the beam
energy is of the order of 200 keVand the operating electric
current is of the order of 1 nA. Note that the fields are
due to the charge and current arising from the flow of
electrons associated with the vortex and we assume that
electron-electron interactions are negligible, thus ignoring
the Boersch effect [15]. A charge density distribution

~�ðr; tÞ and current density distribution ~Jðr; tÞ are associated
with the vortex wave function specified from Eq. (2) to
Eq. (5). Applications of standard quantum mechanical
methods [16] give

~�ðr; tÞ ¼ ejNlj2J2l ðk?�Þ; (6)

~Jðr; tÞ ¼ jNlj2 e@m0

�
l

�
�̂þ kzẑ

�
J2l ðk?�Þ: (7)

The axial electric current Iz is the flux of the axial
component of the current density through a cross section
of radius �l;1. Using Eq. (3) we obtain

Iz ¼ 2�eN2
l I l

�
@kz
m0

�
¼ e@kz

m0D
: (8)

The vortex charge and current distributions specified above
generate electric and magnetic fields which now follow
straightforwardly. Using Gauss’s theorem to evaluate the
electric field, it is clear that the cylindrical symmetry of the
Bessel mode function leads to an electric field that has only
a plane radial component and is a function of � only:

E EVð�Þ ¼ ��̂
ejNlj2
2�0

�½J2l ðk?�Þ � Jl�1ðk?�ÞJlþ1ðk?�Þ�:
(9)

What remains is to eliminate the factor jNlj2 in favor of
the measurable electric current Iz using Eq. (8). This is

achieved for the Bessel beam with radius given by
Eq. (5) for l ¼ 1, and typical electron beam parameters.
The result for the variation of EEV with � is shown in
Fig. 1.
The magnetic field due to the current density can also be

evaluated using standard electromagnetism. We find after
some algebra that there are only two components and these
are functions only of the planar radial position �

B EVð�Þ ¼ B��̂þ Bzẑ; (10)

where B� and Bz are given by

B� ¼
�
e�0jNlj2@kz�

2m0

�
½J2l ðk?�Þ � Jl�1ðk?�ÞJlþ1ðk?�Þ�;

(11)

Bz ¼
�
e�0jNlj2@

m0

�
l

�

Z 1

�
J2l ðk?�0Þd�0: (12)

There are no closed forms of the integral in Eq. (12) and the
result is obtained numerically. The variation of the two
components of BEV for the Bessel beam are shown in
Fig. 2.
To determine how electric and magnetic fields interact

with the electron vortex, we start from the Dirac equation
in the presence of electromagnetic fields, with vector and
scalar potentialsA and�. These potentials can be external,
or they could be those corresponding to the vortex fields
derived above. The appropriate Dirac equation is

fðW � e�Þ � c� � ðp� eAÞ � �m0c
2g�ðr; tÞ ¼ 0;

(13)

where� is a four-component Dirac spinor,� and� are the
Dirac 4� 4 matrices and W is the total energy, including
the rest-mass energy m0c

2. Since we are primarily con-
cerned with EVs created inside electron microscopes for
which the typical energy is 200 keV, we must be satisfied
with the wave function c given in Eq. (2), which is a
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FIG. 1. The electric field of the finite vortex beam as a function
of �, in the radial direction. The parameters used are Iz ¼ 1 nA,
kz ¼ 2:3� 1012 m�1, k? ¼ 0:01kz, and a beam radius, as defined
in Eq. (5), equal to 0.17 nm.
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solution of the free Schrödinger equation with the

Hamiltonian Ĥ0 ¼ p2=2m0. The procedure is to follow a
standard path leading to the nonrelativistic limit of the
Dirac equation, Eq. (13) [17]. In the nonrelativistic limit
the rest energy m0c

2 is the largest energy so we can write

W ¼ m0c
2 þW 0; W 0 � m0c

2; (14)

so that in the absence of any interactionsW 0 would be the
energy appearing in the Bessel vortex wave function of
Eqs. (1) and (2). Wewrite the Dirac spinor in terms of large
and small components �a and �b, respectively, and sub-
stitute in Eq. (13). Using the Dirac representation we can
eliminate the small components�b and write the equation
entirely in terms of the large components�a. We find after
some algebra

�
� ��
2m0

�
1þW 0 � e�

2m0c
2

��1
� ��þ e�

�
�a ¼ W 0�a;

(15)

where� ¼ p� eA. So far we have not made any approx-
imations. In the nonrelativistic regime whereW 0 � m0c

2

and e� � m0c
2 we have

�
1þW 0 � e�

2m0c
2

��1 � 1� ðW 0 � e�Þ
2m0c

2
: (16)

We substitute this into Eq. (15) and make use of the
standard properties of the Pauli matrices, namely, that
�i�j ¼ 	ij þ i�ijk�k, where �ijk is the Levi-Cevita sym-

bol. Dropping small terms consistent with the nonrelativ-
istic regime, the procedure culminates in the Pauli
equation, which we write here in a form abbreviated for
our purposes as

ðĤ0 þ Ĥint þ�� � B� 
S �LÞ�a ¼ W 0�a; (17)

where the two-component state�a ¼ c ðrÞ� is the product
of a single-component space wave function c ðrÞ and a
spin wave function � where � is one of the standard
two-component spin vectors ð1; 0ÞT or ð0; 1ÞT , and where

Ĥ0 ¼ p2=2m0 is the zero order Hamiltonian and the spin
and orbital angular momentum operators S and L are the
usual L ¼ r� p and S ¼ 1

2 @�.

In the perturbation procedure the zero order

Hamiltonian, Ĥ0 ¼ p2=2m0 is the only term to be retained,
which leads to the Helmholtz equation, Eq. (1). The inter-

action term Ĥint in Eq. (17) couples the fields to the vortex
momentum and charge. We have written the last two terms
on the left-hand side of Eq. (17) explicitly in order to
highlight the coupling of the spin to the magnetic moment
of the electron and the spin-orbit coupling. The term con-
taining � ¼ ðe@=2m0Þ couples the spin magnetic moment
to the magnetic fields. Finally, the last term on the left-hand
side of Eq. (17) is the spin-orbit coupling with 
 the
position dependent coupling factor. Note that, in general,
the spin-orbit coupling term 
S �L can only arise for
central scalar potentials, i.e., those having a term of the
form

�ðrÞ ¼ VðrÞ; r� ¼ r̂

r

dV

dr
; (18)

where r ¼ jrj, in which case 
 entering the spin-orbit
interaction term is given by


 ¼ � e

2m2
0c

2r

dV

dr
: (19)

We shall now consider two cases in which the spin-orbit
coupling in the electron vortex would be manifest. The first
case is the scenario in which external fields are absent and
the second case is the scenario in which external fields are
present.
In the absence of external fields only the vortex fields

operate, in which case Eq. (17) becomes

ðĤ0 þ Ĥint þ�� �BEV � 
ð�ÞSzLzÞ�a ¼ W 0�a (20)

since E ¼ �r�, and since the dependence of the electric
field is only on � (i.e., the field is axially central) we have
that

r� ¼ ��̂EEVð�Þ; (21)

with EEV describing the magnitude of the field, such that
EEV ¼ EEV�̂, and �� p ¼ Lzẑ. In this case, the spin-
orbit coupling factor 
ð�Þ is given by


ð�Þ ¼ e

2m2
0c

2�
EEVð�Þ: (22)

As in conventional spin-orbit interaction, the electron vor-
tex spin-orbit interaction is evaluated as a perturbation
once the vortex zero-order eigenvalue problem with zero-

order Hamiltonian Ĥ0 is solved, leading to the vortex energy
eigenfunction, Eq. (2), and energy eigenvalue W 0. First
order perturbation theory gives

�ðl;szÞ ¼ �@
2lszhc j
lð�Þjc i; (23)
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FIG. 2. The magnetic field of the vortex beam as a function of
�, having two components, one azimuthal, B�ð�Þ and one axial,

Bzð�Þ. Note that Bzð�Þ is 2 orders of magnitude smaller than
B�ð�Þ. See the caption to Fig. 1 for parameters used.
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where sz ¼ � 1
2 and l is the vortex winding number, such

that l@ is the OAM about the z axis. For illustration we
consider the simplest and most discussed electron vortex
to date, namely, that for which l ¼ 1. Since sz takes the
values� 1

2 there are two quantum states. Thus, the l ¼ 1 EV

beam is in reality split into two beams with slightly different
energies. The spin-orbit energy splitting between the states
jsz; li ¼ j 12 ; 1i and jsz; li ¼ j � 1

2 ; 1i is given by

	beam
1;ð1=2;�1=2Þ ¼ @

2hc j
lð�Þjc i: (24)

An evaluation of the expectation value of 
ð�Þ leads to

	beam
1;ð1=2;�1=2Þ ¼

@
2

2

D�eN2
1

m2
0c

2

Z �1;1

0
J21ðk?�ÞEEVð�Þd�;

¼ @
2e

4m2
0c

2I1

Z �1;1

0
J21ðk?�ÞEEVð�Þd�: (25)

The order of magnitude of the spin-orbit splitting can be
estimated for typical parameters in the context of electron
vortices created inside electron microscopes. From Fig. 1
we can see that the electric field is of the order of a few
hundred Vm�1; with the parameters given in Fig. 1 this
gives

	beam
1;ð1=2;�1=2Þ � 3� 10�13 eV: (26)

As we point out below in conclusion, this is clearly too
small for direct energy measurement, although we suggest
that indirect measurements are, in principle, possible.
In view of the parameters we have assumed, the electric
and magnetic fields in electron microscope-produced EV
beams generate a small spin-orbit interaction and splitting.
The coupling of the magnetic field to the electron spin
magnetic moment mediated by the interaction term
� �BEV also turns out to be small and we do not pursue
its evaluation in this context.

Finally, we consider the scenario in which external fields
are present, in which case the general equation, Eq. (17),
applies. Having estimated here the contributions from
vortex fields, we now concentrate on the spin-orbit inter-
action due to an external electric field. This, we assume,
is provided by an ion of effective charge Ze situated on
the axis of the beam at z ¼ 0. The ion is assumed to be
embedded in the material, as is normally assumed in
conventional scattering problems [18]. The spin orbit in-
teraction Hamiltonian is given by�
ðrÞS �L. However, in
the electron vortex beam case the OAM is realized only
along the z axis; i.e., we must have L ¼ Lzẑ in which case
the spin-orbit interaction is 
ðrÞSzLz. Since Lzẑ ¼ �� p,
the spin-orbit coupling parameter is now given by


ðrÞ ¼ Ze20
2m2

0c
2ð�2 þ z2Þ3=2 ; (27)

where e20 ¼ e2=ð4��0Þ. Once again we consider the l ¼ 1
vortex and write

� ¼ h�aj
ðrÞSzLzj�ai: (28)

We find the splitting between the states jsz; li ¼ j 12 ; 1i andjsz; li ¼ j � 1
2 ; 1i to be

	external
1;ð1=2;�1=2Þ ¼

@
2Ze20

2m2
0c

2DI1

Z �1;1

0

Z D
2

�D
2

J21ðk?�Þ�
ð�2 þ z2Þ3=2 dzd�:

(29)

Using the same parameters as before for an ȧngström beam
and for orientation as regards to orders of magnitude find-
ing spin-orbit splitting in this case to be

	external
1;ð1=2;�1=2Þ � 5Z� 10�13 eV: (30)

Besides Z as a scaling factor, this is comparable in magni-
tude to the spin-orbit splitting in Eq. (26). The expression
in Eq. (29) can be shown to scale quadratically with k?, so
that the energy splitting is increased for higher values of
k?. This leads to a beam with smaller radial extent, as �l;1

decreases. Hence, the largest value would be expected in
the case of ȧngström size EVs having high transverse
momenta, the generation of which is discussed in Ref. [14].
In conclusion, we have shown that besides the quantized

OAM property an electron vortex possesses electric and
magnetic fields which are responsible for a coupling to the
spin magnetic moment, and for a spin-orbit interaction.
The electric and magnetic fields arise here due to the
charge and current distributions associated with the vortex.
An ordinary electron beam also has both electric and
magnetic fields but these differ materially from the vortex
fields which are characterized by the property of orbital
angular momentum. We have demonstrated that it is the
fact that the vortex electric field is a function of �, i.e., it is
a central vector field and that the beam carries orbital
angular momentum which ensures the existence of the
spin-orbit interactions due to vortex fields. The electric
field of an ion situated on the beam axis is also a central
field, i.e., a function of the radial coordinate r and so leads
to spin-orbit coupling in the presence of the vortex. The
spin-orbit energy shift is negligibly small for the EVs
created within the current generation of electron micro-
scopes for which the limit of detection in energy is about
10 meV. We envisage that indirect measurement tech-
niques of the spin-orbit effect are possible. These would
involve the scenario of creating a spin-polarized vortex
beam subject to radio frequency fields and determining
the variations of effects due to spin flip processes with
radio frequency. This may well be achieved, especially in
the next generation of electron microscopes with high
brightness, high resolution, and ultra high energy. Other
possibilities could involve electron vortex beams not pro-
duced inside electron microscopes but, for example, those
generated in linear accelerators.
The electric and magnetic fields described here are

fundamental properties of electron vortices which are of
interest in their own right. They are, significantly, endowed
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with the property of orbital angular momentum. Work in
hand indicates that these fields are important for the ma-
nipulation, i.e., translation and rotation, of small particles
of matter by the electron vortex, but we shall not pursue
this issue any further here.
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