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The search for Majorana fermions in p-wave paired fermionic systems has recently moved to the

forefront of condensed matter research. Here we propose an alternative route and show theoretically that

Majorana-like modes can be realized and probed in a driven-dissipative system of strongly correlated

photons consisting of a chain of tunnel-coupled cavities, where p-wave pairing effectively arises from the

interplay between strong on-site interactions and two-photon parametric driving. The nonlocal nature of

these exotic modes could be demonstrated through cross-correlation measurements carried out at the ends

of the chain—revealing a strong photon-bunching signature—and their non-Abelian properties could be

simulated through tunnel-braid operations.
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In recent years, strongly correlated photons have proved
to be a remarkably rich platform for investigating phe-
nomena traditionally regarded as pertaining to condensed
matter physics. Tremendous theoretical and experimental
efforts have made it possible to achieve strong optical
nonlinearities at the single-photon level [1,2] and to dem-
onstrate photon blockade effects [3–8]. Meanwhile, the
pursuit of Majorana fermions has become a new focus of
condensed matter research [9,10], and p-wave paired
superfluids and superconductors have been promoted as
paradigmatic systems for investigating the physics of
Majorana modes [11]. Even though strongly interacting
photons have been predicted to exhibit a typical fermionic
behavior [12,13], optical systems have never been consid-
ered as candidates for realizing such exotic physics.

In this Letter, we show that Majorana-like modes
(MLMs) can be obtained in a one-dimensional (1D)
strongly correlated system of impenetrable (or ‘‘fermion-
ized’’) photons. More specifically, we consider a chain of
coupled cavities with strong on-site nonlinearities and
introduce a drive mechanism based on parametric amplifi-
cation which, in stark contrast to previous works, gives rise
to an effective p-wave pairing between (fermionized) pho-
tons. We map our system to the 1D chain originally pro-
posed by Kitaev as a toy model for Majorana fermions [14]
and show the existence of zero-energy modes with proper-
ties similar to those of Majorana modes in solid-state sys-
tems.Owing to the intrinsic dissipative nature of the system,
these ‘‘Majorana-like’’ modes do not benefit from parity
(or ‘‘topological’’) protection against decoherence [15,16],
and thus cannot serve as topological quantum memories
[17]. However, they do behave as genuine Majorana modes
on time scales shorter than the lifetime of a photon in the
system, allowing Majorana physics to be probed.

To demonstrate the fact that MLMs can be detected via
simple optical schemes, we propose a realistic experiment
that takes full advantage of the optical nature of the system
and allows for the direct observation of MLMs through

second-order photon cross-correlation measurements.
Although our proposal is strictly limited to 1D—since
impenetrable photons do not behave as fermions in higher
dimensions—we show that MLMs can effectively be
exchanged using ‘‘tunnel-braid’’ operations [18], enabling
us to simulate their non-Abelian properties.
The model.—The backbone of our system consists of a

1D chain of N optical cavities coupled through nearest-
neighbor photon tunneling (Fig. 1). Each cavity exhibits a
large optical nonlinearity (i.e., is strongly coupled to an
artificial atom) and supports a single mode that can be
described as a Wannier function localized on site i around
the cavity center. Photon tunneling occurs as a result of the
nonvanishing spatial overlap between nearest-neighboring
Wannier modes [19], and the system Hamiltonian takes the
generic form of a generalized Bose-Hubbard model:
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where bi (b
y
i ) are annihilation (creation) operators associ-

ated with the ith cavity of the chain with resonance

FIG. 1 (color online). Driven-dissipative chain of coupled cav-
ities. Each cavity exhibits a large optical nonlinearity and
sustains a single Wannier mode which weakly overlaps with
its nearest neighbors, thus allowing for photon hopping between
sites. Parametric pumps (depicted by arrows) couple to the weak
intercavity field and inject photon pairs which, owing to strong
photon-photon repulsion, split up into different cavities, effec-
tively giving rise to p-wave pairing.
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frequency !c, U is the strength of the on-site photon-
photon repulsion (Kerr energy) due to the large optical
nonlinearities, and J denotes the tunneling amplitude
between nearest-neighboring sites. In this work, we will
focus exclusively on the strong-interaction regime, in
which the energy cost U of adding an extra photon to an
occupied cavity is by far the largest of all relevant energy
scales [20]. In this so-called ‘‘hard-core’’ limit, the occu-
pation of each site is effectively restricted to 0 or 1, and
the photons exhibit a characteristic fermionic behavior
[12,13].

To achieve p-wave pairing, we introduce parametric
pumps (or amplifiers) which, in stark contrast to usual
coherent drives, are tailored to inject pairs of photons
into the system through nonlinear optical processes (see
Supplemental Material [21]). Assuming that these pumps
drive the system locally through the intercavity field—
which consists of a superposition of two neighboring
Wannier modes—photons from a single pair can either
be emitted into the same cavity (or Wannier mode) or settle
into different, nearest-neighboring cavities. In the strong-
interaction regime, the second process is strongly favored,
and the drive Hamiltonian effectively reads

Hdrive ¼ �j�j X
N�1

i¼1

ðeið2!ptþ�Þbibiþ1 þ H:c:Þ; (2)

where � ¼ j�jei� defines the amplitude and phase of the
parametric pumps, and !p their frequency. We note that

the amplitude j�j of the parametric drive is determined by
the overlap of the Wannier modes in a way similar to the
tunneling amplitude J defined above. We thus expect to
be able to reach a regime in which the two quantities are
of the same order. Physically, the above Hamiltonian
describes the coherent exchange of p-wave paired photons
between the system and the classical pump field(s) [22].
It provides the optical counterpart of p-wave superconduc-
tivity that is crucial to access Majorana physics and com-
pensates for losses by continuously replenishing the
system with photons. The time evolution of the system
including the drive and the photon losses is governed by
the Lindblad master equation

@t�¼�i½H0þHdrive;��þ�
XN
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bi�b
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�
; (3)

where � is the density matrix of the system and � the decay
rate associated with the individual cavities.

Mapping to a 1D Kitaev chain.—In the strong-
interaction regime (U � J, j�j), the Hilbert space of the
system effectively reduces to that of hard-core photons
~bi ¼ PbiP , ~byi ¼ Pbyi P , where P projects onto the sub-
space of single occupancy. Hard-core photons can be seen

as spin-1=2 particles, with Pauli-type matrices ��
i ¼ 2~bi,

�þ
i ¼ 2~byi (��

i ¼ �x
i � i�y

i ), and their fermionic nature
can be unveiled by mapping the spin-1=2 particles to

spinless fermions ai, a
y
i using a Jordan-Wigner transfor-

mation [23] of the form ai ¼ 1
2

Q
i�1
j¼1ð��z

jÞ��
i . Defining

� ¼ !p �!c and moving to a rotating frame defined by

H1 ¼ !p

P
i
~byi ~bi, the Hamiltonian H ¼ H0 þHdrive of the

full system becomes, in the fermionic picture,

H ¼ �J
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N�1

i¼1
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��
XN
i¼1

ayi ai; (4)

which corresponds to the 1D p-wave superconductor of
spinless fermions originally introduced by Kitaev [14].
Here, the cavity frequency !c plays the role of a Fermi
level, and the detuning � ¼ !p �!c between the pump

and cavity frequencies that of a chemical potential.
Assuming that j�j � 0, two topologically distinct
(gapped) phases can be identified [14]: a trivial phase
corresponding to j�j> j2Jj and a nontrivial phase corre-
sponding to j�j< j2Jj, in which the system supports
Majorana modes that are exponentially localized at both
ends of the chain. The topological phenomena associated
with the 1D Kitaev chain can be most easily understood for
J ¼ �> 0 and � ¼ 0 (i.e., !p ¼ !c). In this illustrative

case, the Hamiltonian reduces to

H ¼ iJ
XN�1

i¼1

c2ic2iþ1 ¼ �J
XN�1

i¼1

�x
i �

x
iþ1; (5)

with Majorana operators defined as

c2i�1 ¼ ai þ ayi ¼ Yi�1

j¼1

ð��z
jÞ�x

i ;

c2i ¼ �iðai � ayi Þ ¼ �Yi�1

j¼1

ð��z
jÞ�y

i ;

(6)

and can readily be diagonalized as H ¼ 2J
P

N�1
i¼1 ð~ayi ~ai �

1=2Þ with Bogoliubov-Valatin quasiparticle operators ~ai ¼
ðc2i þ ic2iþ1Þ=2. The associated spectrum is symmetric
about the ‘‘Fermi level’’ !c and features a gap 2J. Most
importantly, it exhibits two Majorana zero-energy modes
corresponding to the Majorana operators c1 and c2N local-
ized at the ends of the chain but absent from the
Hamiltonian. These modes define a two-dimensional, non-
local degenerate (zero-energy) subspace which we identify
as a ‘‘Majorana qubit,’’ with associated �z operator

�z
M ¼ ic1c2N ¼ YN

j¼1

ð��z
jÞ�x

1�
x
N: (7)

The stringlike operator P ¼ QN
j¼1ð��z

jÞ that appears in

the above expression corresponds to the parity operator
associated with the total number of (fermionized) photons.
It commutes with the Hamiltonian of Eq. (4), but anticom-
mutes with the collapse operators ��

i entering the
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Liouvillian in Eq. (3). Physically, this means that single-
photon losses result in the breakdown of parity conserva-
tion, as expected, such that the Majorana qubit is not parity
protected—or ‘‘topologically protected’’—from decoher-
ence [24]. Although this disqualifies Majorana modes of
light for practical applications such as topological quantum
memories, this crucially does not hinder the observation of
their exotic physics, since the key features of Majorana
physics—such as the existence of localized Majorana
modes and the possibility of simulating non-Abelian braid-
ing operations in the associated zero-energy subspace—do
not require perfect parity protection to be realized. In fact,
as we demonstrate below, Majorana physics does remain
accessible within time scales much shorter than the life-
time �1=� of a photon in the system. However, the
Majorana modes appearing in our optical framework
only behave as genuine, localMajorana modes in the limit
� ! 0. Only then does the stringlike operator P that they
carry—a remnant of the Jordan-Wigner mapping—reduce
to a simple phase P ¼ �1. In this respect, we will refer to
Majorana modes of light as ‘‘Majorana-like’’ modes.

Our proposal for MLMs, embodied in Eqs. (1)–(3),
could be realized in any cavity quantum electrodynamics
(cavity QED) system lying deep in the strong-coupling
regime. In the Supplemental Material [21], we outline a
potential implementation in circuit QEDwhich we deem as
closest to experimental realization and give ballpark
figures for the relevant parameters and energy scales.

Optical detection scheme.—Multiple schemes have been
proposed for detecting Majorana modes in solid-state sys-
tems (see, e.g., Ref. [10] for a review). Although we
believe that most of them can be transposed to our optical
setting, we will focus on the detection of Majorana-
mediated (photonic) Cooper pair splitting, following the
proposals of Refs. [25,26]. We start with a Kitaev chain in a
topologically nontrivial regime defined by J, �> 0, and
0 � �< 2J, without loss of generality. In such a parame-
ter range, exponentially localized MLMs are expected on
both sides of the chain, with a length scale that increases
with� and diverges as� ! 2J [14]. For finite�< 2J and
small enough system sizes, these modes weakly couple and
the levels of the Majorana qubit that they form split in
energy by an amount �M > 0 [27], as captured by the
Hamiltonian �M�

z
M [the explicit form of �z

M reduces to
�y

1�
y
N when restricted to the end cavities and is given by

Eq. (7) for � ¼ 0]; as a key ingredient, we assume that
�M � Eg, where Eg denotes the gap of the system [28].

Next we introduce two additional nonlinear cavities—one
on each side of the Kitaev chain—which we refer to as the
left (L) and right (R) probe cavities, respectively. We
assume that the latter have resonance frequencies !L;R ¼
!p and that they couple to the end cavities of the Kitaev

chain through weak tunneling only. In the rotating frame
introduced above [in deriving Eq. (4)], the Hamiltonian
describing the interaction with the probes then takes the

form Hprobe¼�JLð�x
L�

x
1þ�y

L�
y
1Þ�JRð�x

N�
x
Rþ�y

N�
y
RÞ,

where 0< JL;R � �M denotes the weak amplitude for

tunneling into the left and right probe cavities, respectively.
Since all energy scales associated with Hprobe are, by

assumption, much smaller than Eg, the probe cavities

only probe the low-energy physics associated with the
MLMs of the chain. Owing to this energy selectivity, the
terms of the form �y

i �
y
j appearing in Hprobe—which medi-

ate coupling to higher excited states—can safely be
neglected, while the operators �x

1 and �x
N—which anti-

commute with �z
M and thus effectively describe a spin flip

of the Majorana qubit—can be replaced by �x
M. This

results in the following low-energy effective Hamiltonian
for the full system:

Heff ¼ �M�
z
M � JL�

x
L�

x
M � JR�

x
M�

x
R: (8)

Physically, the above expression tells us that the nonlocal
Majorana qubit formed by the ‘‘localized’’ (in the limit
� ! 0) MLMs of the chain mediates a nonlocal coherent
exchange of photons between the probe cavities. Clearly,
the bottleneck of such an exchange is given by the time
scale tM � 1=�M over which the Majorana qubit evolves.
We thus only expect to see nonlocal correlations between
the probes if tM is the shortest time scale in Eq. (8), i.e., if
�M � JL;R, as has been assumed. To detect these correla-

tions, one can take advantage of the intrinsic dissipative
nature of the system. Assuming that the decay rate of the
probe cavities satisfies �L;R � JL;R � �M, so that sponta-

neous emission occurs on a time scale much longer than
the time scale tM over which correlations are generated, we
expect a direct signature of MLMs to appear in the second-
order photon cross correlations between the light emitted
from the two probe cavities. In order to illustrate this, we

consider the simple case JL ¼ JR � ffiffiffi
2

p
~J, �L ¼ �R � 8~�,

in the limit where the decay rate � associated with the
cavities of the Kitaev chain vanishes. Following the
method of Ref. [29] (see Supplemental Material [21]),
we then obtain steady-state photon cross correlations
between the probe cavities that read

gð2ÞLR � h~byL ~byR ~bR ~bLi
h~byL ~bLih~byR ~bRi

¼ 1þ h�z
L�

z
Ri � h�z

Lih�z
Ri

ð1þ h�z
LiÞð1þ h�z

RiÞ

¼ 1þ
~�2�2

M

ð~J2 þ ~�2Þ2 : (9)

Remembering that ~�2 � ~J2 � �2
M, we thus find gð2ÞLR � 2;

in other words, the light emitted by the spatially separated
probe cavities is strongly bunched [30]. To examine the
effect of weak dissipation from the chain, we have carried
out numerical simulations of the full Kitaev chain coupled
to the probe cavities. Our studies confirm that a striking
nonlocal photon-bunching signature of MLMs remains
visible for small decay rates �� �L;R � �M of the chain

cavities and small enough system sizes, i.e., as long as the
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effective width of the Majorana levels is much smaller than
their energy splitting (Fig. 2).

We remark that the above results closely parallel those
obtained in Refs. [25,26] in the solid-state setting. Here,
the probe cavities play a similar role to the metallic leads
used in typical solid-state proposals: they provide a narrow
band of states of effective width �1=�L;R close to the

Fermi level !c into which fermionized photons can be
emitted from the system. Because of the large splitting
�M between MLMs, nonlocal—or ‘‘crossed’’—Andreev
reflection is favored over its local analog and Cooper pairs
of photons are split into separate leads (or probe cavities).
We remark that one could in principle remove the probe
cavities and observe directly the light emitted by the end
cavities of the Kitaev chain. In that case, however, spectral
filtering would be required in order to isolate the bunching
signature associated with the low-energy MLMs from
contributions of the bulk.

Versatility of the optical proposal beyond detection.—In
contrast to previous proposals (such as Refs. [31–33]), our
optical system provides a very versatile platform for simu-
lating Majorana physics. In addition to being a conceptu-
ally simple realization of Kitaev’s original lattice toy
model—fermionized photons are intrinsically spinless,
and pairing occurs between nearest-neighboring cavities
only—it allows for single-site addressability and for
local control of all parameters entering Kitaev’s model:
the ‘‘chemical potential’’� can be tuned easily and locally
by modifying the frequency of the individual pumps
(or, alternatively, the resonance frequency of the individual
cavities), and the amplitude and phase of the

‘‘superconducting order parameter’’ � can similarly be
adjusted by controlling the amplitude and phase of the
parametric amplifiers. The tunneling amplitude J, on the
other hand, can be tuned by introducing intermediate
control devices between cavities (see, e.g., Ref. [34] and
references therein). Such level of control is key to over-
coming the crucial challenges currently facing most
solid-state proposals, such as the tuning in and out of
the topological phase and the suppression of disorder
effects [33].
Despite its conceptual simplicity, versatility, and physi-

cal realizability, our optical proposal departs from being
ideal in two respects: (i) it lacks topological protection (or
parity conservation), and (ii) it cannot be scaled up to
networks of 1D wires [35,36]. The first imperfection arises
as a direct consequence of photon losses—unavoidable in
photonic systems—and puts stringent constraints on the
time scale over which Majorana physics can be observed;
namely, MLMs must be manipulated and detected on a
time scale much shorter than the lifetime of a photon in the
system. We argue in the Supplemental Material [21],
however, that state-of-the-art technologies in circuit QED
could allow for the experimental realization of our pro-
posal with a sufficient control over dissipation to meet
these requirements. The second imperfection stems from
the intrinsic nonlocal nature of the Jordan-Wigner mapping
invoked in deriving Eq. (4), ruling out the possibility to
observe non-Abelian exchange statistics in connected wire
geometries. In 1D, the Jordan-Wigner string carried by the
end MLMs of a chain essentially corresponds to the parity
operator of the latter [see, e.g., Eq. (7)], such that end
MLMs do behave as genuine, local Majorana modes on
time scales over which parity is effectively constant. In
higher dimensions, however, the situation changes
drastically: when multiple 1D chains are contacted (not
through their ends, so that the systems effectively is higher
dimensional), the parity of the individual chains becomes a
dynamical quantity and the nonlocal nature of the MLMs
comes into play—with dramatic consequences such as the
absence of non-Abelian exchange statistics. To avoid
such complications, we simply strictly restrict ourselves
to 1D systems. In that case, the exchange of Majorana
modes is impossible in real-space, but can nevertheless
be simulated using so-called ‘‘tunnel-braid’’ operations
[18]. As shown in the Supplemental Material [21], these
operations only preserve the degeneracy of the MLMs—as
real-space braiding—provided that the relative phase
between the latter is properly tuned, and therefore are not
strictly speaking topologically protected. This, however,
does not constitute an additional problem in our optical
setting where parity is anyway not conserved. In the frame-
work of our proposal, tunnel-braid operations crucially
allow us to obviate the need for real-space braiding, hence
providing us with a full-fledged 1D optical platform for
Majorana physics.

FIG. 2 (color online). Numerical results showing the second-

order cross-correlation function gð2ÞLR as a function of the detuning

� for N ¼ 12 (including probe cavities), �=J ¼ 1, JL;R=J ¼
0:02, and for different values of �=J ¼ �L;R=J. MLMs (with

energy splitting �M determined by �) are expected in the region
0 � �=J < 2 (delimited by a dashed vertical line), which cor-
responds to a topologically nontrivial phase (in the limit N!1).
As expected, a strong bunching signature is observed for large �

inside the topologically nontrivial region, while gð2ÞLR 	 1 beyond
the critical point �=J ¼ 2, clearly signaling the absence of
MLMs. All results were obtained using a Monte Carlo wave
function approach (see, e.g., Ref. [37]) with 400 trajectories.
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Conclusions.—We anticipate that our proposal for real-
izing and detecting photonic p-wave pairing will allow
for an exciting alternative avenue for the investigation of
Majorana physics. An interesting possibility would be the
investigation of Majorana modes in a continuum 1D model
of strongly interacting optical photons [12].
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