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We present, and derive analytic expressions for, a fundamental limit to the sympathetic cooling of ions

in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field

during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a

perfectly compensated trap. We conclude that in current experimental implementations, this collisional

heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion

motion. We determine conditions on the atom-ion mass ratio and on the trap parameters for reaching the

s-wave collision regime and the trap ground state.
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The combination of cold trapped ions and atoms [1–8]
constitutes an emerging field that offers unexplored possi-
bilities for the study of quantum gases. New proposed
phenomena and tools include sympathetic cooling to ultra-
cold temperatures [9,10], charge transport in cold atomic
gases [11,12], dressed ion-atom states [13–16], local high-
resolution probes [17,18], and ion-atom quantum gates
[19,20].

In contrast to conservative atom traps, Paul traps employ
radio-frequency (rf) electric fields to create a time-averaged
secular trapping potential for the ion [21]. The rf field can
pump energy into the system if the ion’s driven motion is
disturbed, e.g., by a collision with an atom [22]. The kinetic
behavior of an ion in a neutral buffer gas has been observed
in numerous experiments [23–30]. The ion’s equilibrium
energy distribution was predicted analytically [31], as well
as usingMonte Carlo techniques [26,27,32,33], and recently
a quantum mechanical analysis has been performed [34].
For atom-ion mass ratios below a critical value, the ion is
predicted to acquire a stationary nonthermal energy distri-
bution with a characteristic width set by the coolant
temperature [33].

The rf field drives micromotion of the ion at the rf fre-
quency. At any position and time, the ion’s velocity can be
decomposed into the micromotion velocity and the remain-
ing velocity of the secular motion. Consider the simple case
of a sudden collisionwith an atom that brings the ion to rest, a
processwhich in a conservative trapwould remove all kinetic
energy. Immediately after such a collision, the ion’s secular
velocity is equal and opposite to the micromotion velocity at
the time of the collision. This implies that the ion’s secular
motion can be increased even in a collision that brings it
momentarily to rest. Hence, for cooling by an ultracold
atomic gas [3,4], the energy scale of the problem is no longer
set by the atoms’ temperature but by the residual rf motion
of the ion, caused, e.g., by phase errors of the rf drive or by dc
electric fields which displace the trap minimum from the rf
node [35]. Such technical imperfections have limited

sympathetic cooling so far, with the lowest inferred ion
temperature on the order of 0.5mK [7]. Full quantum control
in these systems [19,20], however, likely requires access to
the smaller temperature scales @!=kB � 50 �K for the trap
zero-point motion and Es=kB � 50 nK for the s-wave colli-
sion threshold [11].
In this Letter, we show that even with the atomic gas at

zero temperature and in a perfectly dc- and rf-compensated
Paul trap, a fundamental limit to sympathetic atom-ion
cooling arises from the electric field of the atom when
polarized by the ion, or equivalently, the long-range ion-
atom interaction. The approaching atom displaces the ion
from the rf node leading to micromotion, whose interruption
causes heating. A second nonconservative process arises
from the nonadiabatic motion of the ion relative to the rf
field due to the long-range atom-ion potential; here, the trap
can do work on the ion and increase its total energy. We find
that, in realistic traps, the work done by the rf field domi-
nates the effect of the sudden interruption of the ion’s
micromotion and leads to an equilibrium energy scale that,
for all but the lightest atoms and heaviest ions, substantially
exceeds both the s-wave threshold Es and the trap vibration
energy @!. Our analysis shows that current atom-ion experi-
ments [1–8] will be confined to the regimes of multiple
partial waves and vibrational quanta and indicates how to
choose particle masses and trap parameters in order to
achieve full quantum control in future experiments. Our
results are supported by numerical calculations that further-
more reveal that in those collisions where the rf field
removes energy from the system, the atom becomes loosely
bound to the ion, leading to multiple subsequent close-range
collisions until enough energy is absorbed from the rf field
to eject the atom and heat the ion.
We consider a classical model and later confirm that the

energies obtained from this model are consistent with a
classical description. An atom of mass ma approaches from
infinity to an ion ofmassmi held stationary in the center of an
rf quadrupole trap. At sufficiently low collision energies, the
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angular-momentum barrier will be located far from the
collision point, and, once it is passed, the collision trajectory
will be nearly a straight line. We initially assume this trajec-
tory to be along an eigenaxis of the rf trap, resulting in a true
one-dimensional collision in the potential Vðri; ra; tÞ ¼
eEðri; tÞri=2þUðrÞ, where e is the ion’s charge, ri and ra
are the ion and atom locations, respectively, r ¼ ri � ra is
the ion-atom distance, and Eðri; tÞ ¼ gri cosð�tþ�Þ is the
rf electric field of the ion trap at frequency�, parametrized
by its quadrupole strength g. The ion-atom interaction po-
tential at large distances is UðrÞ ¼ �C4=ð2r4Þ [11] with C4

the atom’s polarizability and is modeled as a hard-core
repulsion at some small distance. Since in a three-
dimensional collision the atom can approach the ion along
directions that are perpendicular to the rf field or where the rf
field vanishes, we expect our analysis to overestimate the
heating by a factor of order unity, which we address below.

As the ion is pulled from the trap origin by the long-range
interaction U with the approaching atom, the oscillating
electric field E causes it to execute sinusoidal micromotion
with amplitudeqri=2,whereq ¼ 2eg=ðmi�

2Þ is the unitless
Mathieu parameter. As long as the relative ion-atom motion
remains slow compared to the ion’s average rf micromotion
velocity v�m, the ion’s equations of motion will remain

linear, and its secularmotionwill be governed by an effective

conservative potential Vs ¼ 1
2mi!

2r2i þUðrÞ, where ! �
q�=23=2 is the ion’s secular frequency. Associated with Vs

are the characteristic length scale R ¼ C1=6
4 =ðmi!

2Þ1=6 at

which the interaction potentialU is equal inmagnitude to the
trap harmonic potential, time scale T ¼ 2�=!, and energy

scale ER ¼ 1
2mi!

2R2 ¼ 1
2 ðm2

i !
4C4Þ1=3.

In collisions with light atoms, ma <mi, we expect the
ion to remain close to the trap origin. In this case, the ion-
atom distance rðtÞ is governed solely by the motion of the
atom in the ion-atom potential U,

rðtÞ � ð9C4=�Þ1=6jtj1=3; (1)

where the collision occurs at time t ¼ 0, and � ¼
mima=ðmi þmaÞ is the reduced mass. The ion’s displace-
ment rc from the trap center during the hard-core collision
can be estimated by integrating the effect of the force 2C4=r

5

exerted by the atomon the ion trapped in its secular potential,

yielding rc � 1:11ðma=miÞ5=6R. In collisions with heavy
atoms (mi < ma), the ion responds quickly to minimize the
total secular potential until, at ðri; raÞ ¼ ð0:29; 1:76ÞR, its
deformed equilibrium position becomes unstable and the
light ion quickly falls towards the atom with the collision
occurring at the ion displacement rc � 1:76R. For a general

mass ratio, rc=R ¼ ~rcðq;ma=miÞ=ð1þmi=maÞ5=6, where
1< ~rc < 2.

Around the collision point rc, the energy of the systemwill
change as long as the ion moves nonadiabatically relative to
the rf field, including the interval �t1 < 0< t1 around the
collision at t ¼ 0, duringwhich the ion’s velocity _ri is greater

than its averagemicromotion velocityv�m � !rc. Here, the

trap rf field acts as a time-dependent perturbation to the ion-
atom potential, doing work on the ion equal to

W ¼ e
Z t1

�t1

EðriðtÞ; tÞ � _riðtÞdt: (2)

The change in the system’s energy depends on rf phase�
at the time of the close-range collision, reaching themaximal
value Wmax for � ¼ �max. For _ri � v�m, we may neglect

the effect of the electric field on the ion’s trajectory and
approximate the ion’s position using the free collision trajec-
tory rðtÞ, Eq. (1), as ri � rc �mar=ðmi þmaÞ. The work
done by the rf field can then be written as W � Q sin�,
where

Q ¼ W0

Z �t1

��t1

� ffiffiffi
2

p
~rc

ð3j�jÞ2=3 �
q1=3

ð3j�jÞ1=3
�
sinj�jd�; (3)

and

W0 ¼ 2

�
ma

mi þma

�
5=3

�
m2

i !
4C4

q2

�
1=3

(4)

is the characteristic scale for the work done on the ion by the
rf field. Themaximal energy gainWmax � Q occurs for� ¼
�max � �=2, corresponding to the rf field changing sign at
the time of the collision. The nonadiabatic condition j _rij>
jv�mj is equivalent to 3q�t < ð2=~rcÞ3=2, which, for the

practically relevant values of q < 0:5, will always include
the region j�tj< 0:8where the dominant contribution to the
integral in (3) occurs. Consequently, we may extend the

limits of integration to �1 to obtain Q=W0 � 1:82~rc �
1:63q1=3, implying 0:7<Q=W0 < 2:8 for q < 0:5 and at
all mass ratios. Under the same conditions,Q is at least three
times larger than the ion’s averagemicromotion energy at the
collision point E�m � miv

2
�m=2 and the gradual energy

change (2) dominates the effect of the sudden interruption
of the ion’s micromotion. Intuitively, at low collision ener-
gies, the ion-atom potential dominates for a longer time
during which the rf field does more work. Since the trap
electric field must be increased for higher rf frequencies to
preserve the ion secular potential, the heating increases with
a decrease in the Mathieu parameter (Q> 15E�m for

q < 0:1).
Since W corresponds to the difference in the work done

by the rf field during the incoming and outgoing parts of
the collision, the energy change will depend on the phase
� of the rf field at the time of the hard-core collision. For
0<�<�, the rf field accelerates the collision partners
towards each other, increasing the system energy; for �<
�< 2�, the rf field opposes the collision, does negative
work and causes the atom to be bound to the ion with
binding energy on the order of�W0 (Fig. 1). Since the r

�4

potential has no stable orbits, bound ion-atom trajectories
will include further close-range collisions. Depending on
the rf phase during each subsequent collision, the system
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will gain or lose energy on the order of W0, leading to a
randomwalk in energy until the atom finally unbinds. Then
�E depends sensitively on the rf phases at each hard-core
collision spaced in time by many rf cycles, leading to a
sharp dependence of�E on the rf phase� during the initial
collision for �<�< 2� (Fig. 2). Using the approach
below, we calculate the net average energy gain for 0<
�< 2� and ma=mi ¼ 1=2, q ¼ 0:1 as h�Ei ¼ 1:0W0.

To verify the above heating model, we numerically cal-
culated classical trajectories of low-energy one-dimensional
collisions as a function of �, ma=mi and q (Figs. 2 and 3).
The ion was initially held at the trap center while the atom
followed the analytic trajectory (1). At a critical ion-atom
distance r0, the ion was displaced so that the trap’s secular
force would balance the atom’s attraction, while keeping its

velocity zero. Choosing r0 ¼ 3:8ð1þmi=maÞ1=3R ensured
that for all the trap parameters in this Letter, the ion’s initial
micromotion energy was smaller than 10�5W0 and both the
atom’s kinetic energy andUðr0Þ were smaller than 10�2W0.
The equations of motion were integrated using the
Dormand-Prince explicit Runge-Kutta method: away from
collision points, the integration variable was time while near
the collisions the ion-atom distance r was used with a hard-

core radius � ¼ 10�3ð1þmi=maÞ1=3R. The integration was
stopped when the atom reached a distance ra ¼ 2:1r0 much
larger than the ion motion, at which point the total secular
energy of the system was evaluated. We confirmed the
accuracy of our integration by replacing the rf potential
with a time-independent secular potential and confirming
energy conservation at the level of 10�3W0.
Figures 3(a) and 3(b) show the numerically calculated

maximal energy gainWmax in the initial collision as a function

FIG. 1 (color online). Trajectories of an ion riðtÞ and an atom
raðtÞ during a classical one-dimensional low-energy collision.
The atom of mass ma approaches the ion of mass mi ¼ 2ma held
in the center of a rf trap with secular frequency ! ¼ 2�=T and
Mathieu parameter q ¼ 0:1, leading to a hard-core collision at
ri ¼ ra ¼ rc, t ¼ 0 and rf phase �. For � ¼ �=2 (dotted lines),
the rf field adds energy to the system, causing heating. For � ¼
3�=2 (solid lines), the rf field removes energy, binding the atom
to the ion and causing further collisions at various rf phases until
enough energy is accumulated to eject the atom.
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FIG. 2. Change �E in the total secular energy of a colliding
ion-atom system (ma=mi ¼ 1=2, q ¼ 0:1), as a function of the rf
phase � during the first hard-core collision. For 0<�<�, the
system undergoes only one collision with energy gain compa-
rable to the analytic prediction (3) (solid line). For �<�< 2�,
the atom is bound and undergoes several collisions with the ion
before eventually escaping.
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FIG. 3. Maximal energy gain Wmax in a low-energy one-
dimensional ion-atom collision as a function of the atom/ion
mass ratio ma=mi with Mathieu parameter q ¼ 0:1 (a) and as a
function of q with ma=mi ¼ 1=2 (b). Data points are numeric
calculations. The solid lines correspond to Wmax ¼ Q, while the
dashed lines represent Wmax ¼ W0.
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FIG. 4 (color online). (a) Distribution of numerically computed
secular energy gains in 2883 random low-energy collisions
between a free 87Rb atom and a 174Ybþ ion held in the three-
dimensional trap from Ref. [2], in units of the three-dimensional
micromotion heating energy scale W3D

0 ¼ 4 W0=ð3�Þ. Inset (b)
shows a sample ion-atom collision trajectory.
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of ma=mi and q. For q � 0:1, the calculatedWmax is within
30% of the analytic prediction Wmax ¼ Q; for q ¼ 0:5,
ma=mi ¼ 1=2, Wmax increases to 1:7Q, partly because the
analytic result does not include themicromotion interruption.
The heating is insensitive to the hard-core radius: a tenfold
increase or decrease in � changesWmax by less than 1%. Our
results are also robustwith respect to the initial conditions: the
average energy gain in Fig. 2 changes by less than 5% if the
ion is started at rest at the trap center and the atom is started at
rest a distance R away.

In three-dimensional linear quadrupole rf traps, the elec-
tric field E and the ion position ri in (2) are vectorial
quantities. Assuming that the collision trajectory is still
nearly one-dimensional, averaging over the atom’s approach
direction rescales the work done by the rf field, Eq. (2), by
4=ð3�Þ, leading to a natural three-dimensional heating scale
W3D

0 ¼ 4W0=ð3�Þ. To check this, numerical simulations

were done for the three-dimensional quadrupole rf trap
from Ref. [2]. We considered cold 87Rb atoms that have
passed the angular momentum barrier at a large distance and
are colliding head-on with a 174Ybþ ion from a random
direction and at a random time. The initial conditions were
chosen by analogy to the one-dimensional case. Figure 4(b)
shows a sample ion-atom trajectory including multiple col-
lisions. Due to a difference in the axial and radial frequen-
cies of the ion trap, the collision trajectory precesses about
the y axis, while remaining nearly one-dimensional close to
the collision points. A histogram of the final system energies
E after the atom is ejected to infinity is shown on Fig. 4(a),
with an average energy gain of 0:9W3D

0 , confirming the

heating scale W3D
0 .

Table I shows W0 together with the s-wave threshold
energy Es ¼ @

4=ð2�2C4Þ and the energy @! of a trap vibra-
tional quantum in various experimental systems. In the cur-
rent systems [1–8], atomnumber per characteristic volumeR3

is much smaller than one, while the atoms’ kinetic energy is
much smaller thanW0, and we expect binary ion-atom colli-
sions to be well described by our model. Given the typical

duration of a collision of about T=2 and typical ion-atom
collision rate coefficients [7], few-body effects, including
three-body recombination into loosely bound molecular
ions, are expected at critical atom densities on the order of
nc � 1014 cm�3. As their dynamics becomes fast relative to
the rf frequency, ion-atom stateswith binding energies several
times larger thanW0 may experience significantly decreased
heating [34]. On the other hand, three-body processes have
been observed to induce strong loss into electronically bound
states [7]. Thus, the best sympathetic cooling is expected in
the density regimen < nc,where it is limited by the two-body
energy scale W0 to temperatures Tmin �W0=kB. In the
present systems, W0 is more than one (almost three) orders
of magnitude larger than the trap vibrational quantum
(s-wave scattering limit).
Since, for light atoms, the ratios of heating to the s-wave

collision threshold and to the trap vibration quantum

scale as W0=@! / ð!C4Þ4=3m11=3
a =mi and W0=ð@!Þ /

ð!C4Þ1=3m5=3
a =mi, respectively, our model predicts that

micromotion heating could be mitigated using light atoms
and heavy ions trapped in weak rf traps, limited by the
control of dc fields (since Es

DC / !). In particular, with

control over the dc electric fields on the order of
10 mV=m, an order of magnitude better than current state-
of-the-art [7], the Ybþ=Li system might enter the s-wave
regime. Heating could also be decreased by employing
Raman transitions to produce sufficiently deeply bound
molecular ions [34]. Another option may be the use of an
optical trap for the ion, as was recently demonstrated [36].
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(London) 464, 388 (2010).

TABLE I. The quantum s-wave energy limit (Es), the corresponding radial dc electric field
Es
DC at which the ion micromotion energy is equal to Es, the ion trap vibrational quantum (@!),

and the micromotion-induced energy scale W0 in various ion-atom systems. The Ybþ þ Rb and
Baþ þ Rb systems have a sufficiently large ratio of elastic to inelastic collisions to permit
cooling [4,8]. For Ybþ þ Yb and Rbþ þ Rb, charge exchange collisions are endothermic for
certain isotope combinations. The Ybþ þ Ca system exhibits a very large inelastic collision rate.

Ion Atom q Es=kB (nK) Es
DC (mV=m) @!=kB (�K) W0=kB (�K)

174Ybþ 87Rb [2] 0.013 44 4.6 9.6 540
87Rbþ 87Rb [7] 0.24 79 7.7 17 210
138Baþ 87Rb [4] 0.11 52 4.5 9.6 150
40Caþ 87Rb [6] 0.20 200 2.6 5.3 50
174Ybþ 172Yb [1] 0.14 44 1.6 3.2 41
174Ybþ 40Ca [5] 0.25 270 14 12 32
174Ybþ 23Na 0.30 710 4.7 2.4 1.5
174Ybþ 7Li 0.30 6400 14 2.4 0.24

PRL 109, 253201 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 DECEMBER 2012

253201-4

http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1103/PhysRevLett.102.223201
http://dx.doi.org/10.1038/nature08865
http://dx.doi.org/10.1038/nature08865


[3] C. Zipkes, S. Palzer, L. Ratschbacher, C. Sias, and
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