
Symmetric Tensor Decomposition Description of Fermionic Many-Body Wave Functions

Wataru Uemura and Osamu Sugino

The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan
(Received 7 August 2012; published 21 December 2012)

The configuration interaction (CI) is a versatile wave function theory for interacting fermions, but it

involves an extremely long CI series. Using a symmetric tensor decomposition method, we convert the CI

series into a compact and numerically tractable form. The converted series encompasses the Hartree-Fock

state in the first term and rapidly converges to the full-CI state, as numerically tested by using small

molecules. Provided that the length of the symmetric tensor decomposition CI series grows only

moderately with the increasing complexity of the system, the new method will serve as one of the

alternative variational methods to achieve full CI with enhanced practicability.
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An accurate description of the ground-state wave func-
tion of an interacting fermion system is one of the central
goals of modern science. The most straightforward and
versatile approach to describing this wave function is the
configuration interaction (CI), but its numerical application
is greatly limited by the fact that the full-CI series consists
of MCN Slater determinants (SDs) when describing an
N-electron system by usingM basis functions. To truncate
this extremely long CI series without compromising on
chemical accuracy, many methods have been developed,
such as the multireference CI, which uses a part of the SDs
derived from a few of the most important ones, or the
complete active space CI, which uses all SDs generated
from a selected set of orbitals [1]. Even so, the application
has been hampered by the slow convergency of the CI
series.

In this context, the many-body perturbation approaches
to treat all SDs have attracted attention; these approaches
include the coupled cluster theory [2,3], which is used to
represent the wave function in terms of an SD (or a few
SDs) applied with the exponential of an excitation opera-
tor. The coupled cluster theory has proven accurate for a
number of molecules, although it occasionally provides
qualitatively incorrect potential surfaces [4]. The density
matrix renormalization group method [5] has also attracted
attention as a variational method within the space of the
matrix product state [6]. It has been extensively applied to
correlated electron systems [7,8]; however, this method
was originally formulated only for one-dimensional sys-
tems, and its extension to three-dimensional systems is not
very straightforward.

Recent tensor analyses have shown that, despite the
large number, the CI coefficients may be described by a
tractable number of variational parameters. For example,
the full-CI results of some molecules were accurately
reproduced by the complete-graph tensor network state
containing �M2 variational parameters [9,10]. Tensor
decomposition (TD) [11] methods such as the Tucker
decomposition [12] and the canonical decomposition

combined with the parallel factor decomposition, abbrevi-
ated as CP [13,14], have also been applied to molecules.
These methods were used to analyze the double excitation
tensor T 2 originating from the electron-electron interac-
tion [15,16]. The results showed that theT 2 tensor of rank
4, consisting of �M4 terms, can be described by �MK
parameters, where K denotes the length of the tensor
decomposition [16]. The TD method was also suggested
as being effective in greatly reducing the variational pa-
rameters required for full CI [15].
In this context, we formulate a practical scheme to

perform full-CI level calculation using a TD method.
In this study, we describe the CI coefficients as a product
of a symmetric tensor and the permutation tensor, and
following the CP procedure we expand the former into K
symmetric Kronecker product states, which are composed
of vectors of dimensionM. Subsequently, we calculate the
second-order density matrix consisting of �K2M4 ele-
ments using Viète’s formula [17], thereby performing
�M2 operations for each element. This allows us to per-
form the total energy calculation variationally by using
�K2M6 operations. Our test calculations for the potential
surface of simple diatomic molecules and for a Hubbard
cluster model with different parameters show that, with
increasing K, the total energy rapidly converges to the
full-CI result. This shows that our symmetric tensor
decomposition (STD) CI scheme will greatly extend the
applicability of the full-CI level calculation, provided that
K increases only moderately with N,M, or the complexity
of the electron correlation.
In treating the interacting indistinguishable particles, the

(anti)symmetric nature of the wave function plays a key
role. In the STD CI scheme, the antisymmetric nature of
electrons is directly treated by explicitly introducing the
permutation tensor, reducing thereby the variational degree
of freedom to a power of N, although it is N! in the
conventional CI. Moreover, the application of this scheme
is not restricted to one-dimensional systems, contrary to
the density matrix renormalization group that is based on
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the assumption of the matrix product state. In the rest of
this Letter, we provide the details of the STD CI method.

We begin by describing the CI-series representation of
the many-body wave function

�ðx1 � � � xNÞ ¼
XM

i1;...;iN¼1

Ai1;...;iNc i1ðx1Þ � � � c iN ðxNÞ; (1)

where x1 � � � xN represent the space and spin coordinates of
the electrons and c ik’s are the orthonormal orbitals which

are represented as a linear combination of orthonormalized
basis functions as

c iðxÞ ¼
X

j

Uij�jðxÞ:

The antisymmetric tensor Ai1;...;iN can be described as the

product of a symmetric tensor (Si1;...;iN ) of rank N and

dimension M and a product of NðN � 1Þ=2 permutation
tensors (�ij’s) of rank 2 as

Ai1;...;iN ¼ Si1;...;iN�i1i2�i1i3 � � � �iN�1iN : (2)

Next, Si1;...;iN is decomposed into a minimal linear combi-

nation of symmetric Kronecker product states using vec-
tors of dimension M, c1ik ; � � � ; cKik , as

Si1;...;iN ¼ XK

j¼1

�jc
j
i1
� � � cjiN : (3)

This STD is a symmetric version of CP, which is also a
special case of the symmetric Tucker decomposition

Si1;...;iN ¼ X

j1;...;jN

sj1;...;jNu
j1
i1
� � �ujNiN ; (4)

in that the transformed tensor sj1j2;...;jN is the superdiagonal

�j in CP. The total energy is optimized by varying the

vectors cji and the unitary matrix Uij, so that no approxi-

mation is made in our STD CI method apart from the
truncation of the series at K. It is noteworthy that each
term in the STD series contains all the SDs generated from
the orbitals c i, although the degrees of freedom are only
MK þMðMþ 1Þ=2 as a whole, thereby indicating that we
are treating the entangled states and that the degree of
entanglement is reduced with increasing K. It can be
shown that the Hartree-Fock (HF) approximation corre-
sponds to taking K ¼ 1 and c1Nþ1 ¼ � � � ¼ c1M ¼ 0; there-
fore, the approximation with K ¼ 1 is already a natural
extension of the HF approximation. When treating a
weakly correlated system, an HF-like solution is obtained,
and, on the other hand, when treating a strongly correlated
system, an orbital-ordered solution is obtained, provided
that a sufficiently large value of K is considered. In this
manner, we can bridge the HF solution with the fully
correlated state by increasing the value of K. The STD
CI method is exact when K¼M CN .

Our numerical procedure begins by constructing the
second-order density matrix, which has the form

�2ðx1x2; x3x4Þ ¼
XM

i1i2i3i4¼1

�i1i2i3i4c
�
i1
ðx1Þc �

i2
ðx2Þ

� c i3ðx3Þc i4ðx4Þ:
By using (2) and (3), the density matrix coefficient can be
rewritten as

�i1i2i3i4 ¼
XK

ij¼1

�i�jc
i�
i1
ci�i2c

j
i3
cji4�i1i2�i3i4I

ij
i1i2i3i4

;

where I for each set of indices fiji1i2i3i4g is expressed, by
using akl � ci�kl c

j
kl
�i1kl�i2kl�i3kl�i4kl , as

I ¼ XM

k3;...;kN¼1

ak3 � � � akN ð�k3;...;kN Þ2: (5)

Based on the fact that the permutation tensor squared is
equal to 1 when all the indices are different and 0 other-
wise, it can be shown by using Viète’s formula that the
value of I is equal to the M� ðN � 2Þth order coefficients
of the polynomial ðN � 2Þ!fMðtÞ with fMðtÞ �
ðtþ a1Þ � � � ðtþ aMÞ [18]. The coefficient can be easily
obtained by using a list manipulation, where the coeffi-
cients of fpðtÞ with 0 � p � M are described by a row

vector of dimension p as fp ¼ ðfp;0; fp;1; � � � ; fp;p�1Þ and
are applied with the iterative equation fp ¼ apðfp�1; 0Þ þ
ð0; fp�1Þ, considering f0 ¼ 1. / M2 operations are

required to obtain the coefficient of fMðtÞ. Therefore, the
total number of operations needed to obtain all I’s is
/ K2M6. In practical coding, one may use the fact that
aik ¼ 0when ik is equal to one of the four indices fi1i2i3i4g
to achieve further efficiency.

Subsequently the parameters cjik , �j, and Uij are

varied to minimize the total energy Etot ¼P
hi1i2i3i4�i3i4i1i2=

P
�i1i2i1i2 with

hi1i2i3i4 ¼
Z

dx1dx2c
�
i1
ðx1Þc �

i2
ðx2Þ

�
N

�
� 1

2
r2

1 þ vextðr1Þ
�

þ NðN � 1Þ
2

1

jr1 � r2j
�
c i3ðx1Þc i4ðx2Þ; (6)

where vext denotes the external potential. In the variation,

we require derivatives of Iiji1i2i3i4 with respect to aik for

those ik not in fi1i2i3i4g. To obtain the derivatives, we
need to differentiate fMðtÞ by aik and obtain its ½M� ðN �
1Þ�th coefficient. When this is done simply by using the list
manipulation, / K2M7 operations are required for each ik;
however, the number of operations can be reduced when
using fMðtÞ=ðtþ aikÞ for the differentiation. When the

series ðtþ aikÞ�1 ¼ P1
m¼0 a

�m�1
ik

ð�tÞm is multiplied with

fMðtÞ, the ½M� ðN � 1Þ�th coefficient can be obtained as

PRL 109, 253001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 DECEMBER 2012

253001-2



� XM�ðN�1Þ

s¼0

ð�aikÞs�1�MþðN�1ÞfM;s;

thereby requiring / M operations for each k. Therefore,
�K2M6 operations are required to obtain all the deriva-

tives of Iiji1i2i3i4 . By applying the same technique to the

expression fðtÞ=ðtþ aiÞðtþ ajÞ, the second derivatives

are similarly obtained with / K2M6 operations. It should
be noted that the calculation of the derivatives is the rate-
determining step in our calculation.

In a manner similar to HF [19,20], STD CI can be
applied to a crystalline solid by taking a linear combination
of the atomic orbitals �i as

�ikðrÞ ¼
X

�

eik�R��iðr� R�Þ;

where k and R� denote the reciprocal vector in the
Brillouin zone and the nuclear coordinate, respectively.
Thus, M should be read as the number of k values multi-
plied by the number of basis functions.

To assess the efficiency of the STD CI scheme, we
investigate how many terms in Eq. (3) are required to

achieve convergence in Etot. This investigation is carried
out for simple diatomic molecules (H2, He2, and LiH) and
a four-site Hubbard model. Relativistic effects are
neglected, and only the spin unpolarized state is calculated
by using the same number of orbitals with an � and � spin.
In testing the convergence, the calculated results are com-
pared with the full-CI calculation performed by using the
same basis functions. In our calculations, the Newton-
Raphson method is used to variationally determine the
parameters.
H2 is the simplest molecule where the molecular orbital

picture, valid near the equilibrium bond length, is switched
to the Heitler-London picture, as the interatomic distance
increases to infinity. The calculation with the Slater-type
orbital 3G basis set shows that K ¼ 1 reproduces the full-
CI potential curve within an error of 0.01 hartree, while the
error is less than 0.01 mhartree when K ¼ 2 (Fig. 1). The
moleculeHe2 is weakly bound to the dispersion forces, and
the test is more stringent in this case. The calculation with
the 6–311G basis set shows that K ¼ 3 is sufficient to
reproduce the full-CI result within an error of 0.01 mhar-
tree, whileK ¼ 2 is already sufficient to obtain the binding
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FIG. 1 (color online). Potential curve of H2 molecules for full
CI (solid line with circle), STD CI with K ¼ 1 (broken line with
cross) and K ¼ 2 (broken line with asterisk), and HF (dotted line
with rectangle).
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FIG. 2 (color online). Potential curve of He2 molecules for full
CI (solid line with circle) and STD CI with K ¼ 2 (broken line
with cross) and K ¼ 3 (broken line with asterisk).
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FIG. 3 (color online). Potential curve of LiH molecules for full
CI (solid line with circle), STD CI with K ¼ 1 (broken line with
cross) and K ¼ 2 (broken line with asterisk), and HF (dotted line
with rectangle).
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energy within the same accuracy, although the absolute
value of Etot is always larger by 0.1 mhartree (Fig. 2). The
binding energy is about 3 times larger than the accurate
quantum chemical calculation [21] and the experimental
results [22], which is presumably due to the insufficient
number of basis functions; obtaining an accurate value of
the binding energy is beyond the scope of our comparative
study, and this must be the consideration of future studies.
LiH is a typical heteronuclear diatomic molecule. The
4–31G calculation for this case shows that K ¼ 1 nearly
sufficiently reproduces the full-CI result while the HF
calculation significantly underestimates the binding energy
(Fig. 3). The final test is the application of our idea to the
four-site Hubbard model in the tetrahedron structure under
the half filled condition. As the Hubbard U over the trans-
fer t increases, larger K values are required; however, K ¼
6 is found sufficient even in the large U=t limit (Fig. 4).

The computational time theoretically scales as K2M6.
We tested the time scaling with our numerical code to find
that CPU time indeed scales as K1:97M5:97 on average
(Figs. 5 and 6). Because the operations involved in the
calculation can be performed independently, this method is
suitable for massively parallel computers.

We formulated a practical scheme to perform the full-CI
level calculation using the STD method. In the STD CI
method, we expand the CI coefficients as the product of a
symmetric tensor and the permutation tensor, and we fur-
ther expand the symmetric tensor into Kronecker product
states composed of vectors of dimensionM. By varying the
vectors and the unitary transformation matrix Uij, the total

energy is minimized by using the second-order density
matrix technique. The STD CI method, which involves
taking the length of the series K as the only input parame-
ter, allows us to perform a full-CI level calculation rigor-
ously by using KMþMðMþ 1Þ=2 variational parameters
and �K2M6 operations. By applying the scheme to the
potential curve of small diatomic molecules such as H2,
He2, and LiH and the four-site Hubbard model for various
parameters, we found that a very small K value is required
to reproduce the full-CI results within millihartree accu-
racy. If K increases moderately with N,M, or the degree of
correlation, the scheme will greatly extend the applicabil-
ity of the full-CI level calculation. We believe that appli-
cation of the scheme to a crystalline solid and the use of the
scheme as a building block of the fragment molecular
orbital scheme can be of high significance [23].
The authors thank Professor Y. Mochizuki (Rikkyo

University) and M. Nakata (RIKEN) for their valuable
discussions.
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