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The analytic structure of the nonperturbative gluon propagator contains information on the absence of
gluons from the physical spectrum of the theory. We study this structure from numerical solutions in the
complex momentum plane of the gluon and ghost Dyson-Schwinger equations in Landau gauge Yang-
Mills theory. The resulting ghost and gluon propagators are analytic apart from a distinct cut structure on
the real, timelike momentum axis. The propagator violates the Osterwalder-Schrader positivity condition,
confirming the absence of gluons from the asymptotic spectrum of the theory.
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Introduction.—One of the fundamental properties of
QCD is the absence of its elementary degrees of freedom,
the quarks and gluons, from the physical spectrum of the
theory. The associated problem of quark confinement is a
much debated issue [1]. In this discussion it is useful to
distinguish between two notions of confinement. One is in
terms of color confinement, i.e., the absence of colored
states from the asymptotic, physical state space of the
theory. The other is strictly related to the center symmetry
of Yang-Mills theory. Both notions are not equivalent. If
center symmetry is unbroken, there exists a linear rising
potential between static color charges in the fundamental
representation of the gauge group, stretching out to arbi-
trary distances r of the charges. In QCD, the mere presence
of fundamental dynamical charges breaks this symmetry.
Consequently, string breaking sets in at a sufficiently large
separation R of the fundamental test charges and the
potential becomes flat for » > R. Thus, if confinement is
defined in terms of unbroken center symmetry, QCD is not
a confining theory [1]. Gluons are also not confined in this
sense, since they live in the adjoint representation of the
gauge group. When two gluons are separated far enough
from each other, they pull two additional gluons out of the
vacuum and dress up to form colorless bound states. This
brings us back to the other notion of confinement: the
absence of colored asymptotic states. A possible explana-
tion of this absence are positivity violations. By definition,
the asymptotic Hilbert space JH phys Of colorless physical
particles has to be positive (semi-) definite, otherwise a
probabilistic interpretation of its S-matrix elements would
not be possible. Thus, positivity violations in the gluon
propagator constitute a sufficient signal for the absence of
gluons from the asymptotic spectrum of the theory.

Another source of interest in the analytic structure of the
gluon propagator comes from heavy-ion -collisions.
Currently, there is great activity both from theory and
experiment at RHIC and ALICE/LHC to shed light on
the properties of the quark-gluon plasma, i.e., strongly
interacting matter at large temperatures and/or density.
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Transport models like the parton-hadron-string dynamics
approach [2] analyze the dynamics of quarks and gluons in
the quark-gluon plasma. An important input into these
calculations is the temperature-dependent spectral function
of the gluon, a quantity directly related to its analytical
structure. Whether and how this structure changes below
and above the deconfinement transition is currently an
open question [3].

What can the zero temperature analytic structure of the
gluon propagator look like? Based on studies of the gauge
fixing problem, Gribov [4] and later on Zwanziger [5]
suggested a form for the gluon propagator with complex
conjugate poles at purely imaginary squared Euclidean
momenta. A generalization with complex conjugate poles
in the negative half-plane of squared complex momenta has
been suggested by Stingl in Ref. [6] and has been recently
explored in detail in the refined Gribov-Zwanziger frame-
work Ref. [7]. These forms have in common that they may
pose a problem for the analytic continuation of the theory
from Minkowski space to the Euclidean formulation used
by lattice gauge theory and functional methods. An alter-
native form with a branch cut structure for real and timelike
squared momenta has been proposed in Ref. [8] and found
to compare well with numerical results for the propagator
and its Schwinger functions in the Dyson-Schwinger
approach.

All explicit calculations of the gluon propagator so far
have been restricted to the real and spacelike Euclidean
momentum domain. Clearly, in order to pin down the ana-
Iytic structure of the gluon propagator, an extension of these
calculations into the complex momentum domain is highly
desirable. In this Letter we report the first results of such a
calculation. Within the continuum formulation of Landau-
gauge Yang-Mills theory, we solve the coupled system of
Dyson-Schwinger equations for the nonperturbative gluon
and ghost propagators in the complex momentum plane and
extract the analytic structure at timelike momenta. As a
main result we find analytic propagators everywhere, apart
from cuts on the real, timelike momentum axis.
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The framework.—The Dyson-Schwinger equations
(DSEs) for the ghost and gluon propagators are shown in
Fig. 1. They form a coupled set of integral equations with
renormalized, bare, and dressed propagators and vertices.
In Landau gauge, the explicit form of the propagators is
given by

2
D,W<p>=(aw—””§’”)zij’2) po(p) = -5,

p
(D

with the gluon dressing function Z(p?) and the ghost dress-
ing function G(p?). These functions can be numerically
determined from their DSEs provided explicit expressions
for the dressed ghost-gluon, three-gluon, and four-gluon
vertices are known. Since these satisfy their own DSEs
containing unknown higher n-point functions, in practice
one needs to truncate this tower to generate a closed and
solvable system of equations. Certainly, meaningful results
can only be achieved by careful control of the quality of
such a truncation.

A scheme which maintains multiplicative renormaliz-
ability and transversality has been devised in Ref. [9]; for
transverse projection of the gluon DSE, this scheme is
equivalent to the one used previously in Ref. [10]. It uses
a bare ghost-gluon vertex, a choice that is close to the results
of corresponding lattice calculations [11], an Ansatz for the
dressed three-gluon vertex in terms of the propagator func-
tions, see Refs. [9,10] for details, and a vanishing four-gluon
interaction. Given this choice, the coupled system of DSEs
can be solved numerically. The resulting solution for the
gluon dressing function Z(p?) has been discussed in
Refs. [9,10] and, for the convenience of the readers, is
shown again in Fig. 2 together with corresponding lattice
results [12]. In the large momentum region, where the
perturbative behavior sets in, both approaches agree very
well. This is also true in the low-momentum region. In the
deep infrared, the gluon dressing function displays the
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FIG. 1. Dyson-Schwinger equations for the gluon and ghost

propagator. Filled circles denote dressed propagators and empty
circles denote dressed vertex functions.

“massive’” behavior Z(p?) ~ p?. Such “decoupling” types
of solutions, as opposed to ‘“‘scaling,” [13] have been
suggested long ago [14] and have been revived in
Refs. [15—-17]. Large-volume lattice results agree with this
type of solution [18], although it remains a matter of current
debate whether problems with gauge fixing in the context of
Gribov copies are already well under control [19-22].

In the midmomentum region around one GeV, there
are differences between the DSE and the lattice result on
the 20% level, which have to be attributed to the above-
discussed vertex truncations for the ghost-gluon, three-
gluon, and four-gluon vertex. Improvements for the dressed
ghost-gluon vertex have been discussed in Refs. [23,24].
Furthermore, first studies of other types of Ansdtze for the
dressed three-gluon vertex are available [24], and studies
in the background gauge Pinch-technique scheme empha-
size the importance of poles in the longitudinal parts of the
three-gluon vertex, see Ref. [25] for a review. While all
these studies are interesting on systematic grounds, the
resulting solutions for the gluon dressing function are not
closer to the lattice result than the one shown in Fig. 2. The
remaining difference may therefore very well be attributed
to the missing two-loop diagrams involving the four-gluon
interaction. Indeed, pointwise agreement with the lattice
data has been achieved within the framework of functional
renormalization group equations [9], where such contribu-
tions can be taken into account due to the exact one-loop
structure of the equations. Within the DSE framework, the
technical complications arising from the two-loop diagrams
only allowed for phenomenological treatments of these
contributions so far [26]. We therefore prefer to defer a
study of the influence of these terms to future work and use
the well-established truncation scheme of Refs. [9,10] in the
following.

The numerical techniques necessary to solve a coupled
set of DSEs in the complex plane have been explored up to
now only in the context of the fermion propagator, see
Ref. [27] and the Appendix of Ref. [8]. The basic idea is to
shift the contour of radial integration in the loop integral
into the complex plane such that singularities in the angular
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FIG. 2 (color online). Results for the gluon dressing function
Z(p?) from lattice calculations [12] compared to the result from
DSEs [9].
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integral are meliorated. For this work we adapted this
method for the ghost and gluon system. Details will be
given elsewhere. We have cross-checked our numerics also
by employing a different method which solves the DSEs
directly on a grid of complex momenta without any shifts
in the integrals [28]. The results of both methods agree
well for a large range of complex momenta. However,
close to the timelike momentum axis, our first method
clearly delivered much more stable results and is therefore
preferred.

Results and discussion.—Our results for the analytic
structure of the gluon and ghost propagator in SU(N)
Yang-Mills theory are shown in Figs. 3 and 4. Let us first
discuss the real parts of the propagators. In the lower
diagram of Fig. 3, we see a spike structure of the ghost
dressing function, which is located at the origin of the
complex momentum plane. Since we have chosen a decou-
pling type of solution for the ghost-gluon system, the ghost
dressing function is finite at p> = 0. At our numerical
infrared cutoff |€?| =107, the value G(e*) depends
slightly on the direction from which zero is approached.
In our calculation, G(e?) =5 when p>— 0", but
G(—€?) = 5.005 ¥ i0.004 when p>— 0~ on the real
axis. Thus, the real part of the ghost dressing function is
almost symmetric around the origin of the complex mo-
mentum plane. For the real part of the gluon propagator in
the upper diagram of Fig. 3, the situation is entirely differ-
ent. Again, the propagator is finite at p> = 0 but shows
large positive values for complex momenta and negative
structures close to the negative real momentum axis. The
positive spikes extend up to ND(p?) = 40 GeV? staying

Gluon Propagator - Real Part

Ghost Dressing - Real Part

RUAANANT S

NN

JHARBORANNNN
T

FIG. 3 (color online). Results for the real part of the gluon
propagator function D(p?) and the ghost dressing function G(p?)
in the complex momentum plane, including colored contour
maps and lines. The displayed range of the gluon propagator is
restricted in order to resolve smaller structures. See text for the
extrema of ND(p?).

definitely finite. Closer to the negative real momentum
axis, the propagator becomes negative for |p?| larger
than some finite value on the negative real momentum
axis. The corresponding narrow dip is finite in depth and
sizably extends 0.3 GeV? out into the complex momentum
plane. The minimum value of the dip is approximately
ND(p?) = —105 GeV?.

Now let us discuss the imaginary part in Fig. 4. Here we
clearly see a cut structure emerging for both the gluon
propagator and the ghost dressing function along the nega-
tive real momentum axis. No further structure is seen in the
complex momentum plane. We thus arrive at an important
result of our study: the ghost and gluon propagators have
nontrivial analytic structure only on the timelike real mo-
mentum axis. This is in contrast to the expectations from
the studies of Gribov, Zwanziger, and Stingl [4-7], which
all assumed singularities away from the real momentum
axis. We find no evidence for these. Within the present
numerical accuracy, the cuts are sharply peaked but finite.
Whether an even more precise treatment leads a singularity
in ID(p?), as assumed in the fits to the DSE results in
Ref. [8], remains an open question.

The cuts in the imaginary part of the ghost and gluon
propagators are directly related with the corresponding
spectral functions,

p:,e(P?) = —3{Dg (p?)}/ (2)

with Dg(p?) = —G(p?)/p?, D,(p*) = Z(p?*)/p?*, and the
momentum p? on the negative real momentum axis of the
upper complex half plane. We therefore show them more
closely in Fig. 5. Our numerical results are obtained on a

GluonPropagator-ImaginaryPart

GhostDressing-ImaginaryPart

FIG. 4 (color online). Results for the imaginary part of the
gluon propagator function D(p?) and the imaginary part of the
ghost dressing function G(p?) in the complex momentum plane
including colored contour maps and lines. The displayed range
of the gluon propagator is restricted in order to resolve smaller
structures. See also Fig. 5 for the full scale.
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FIG. 5 (color online). Results for the gluon spectral function
and the ghost spectral function as a function of momentum.

grid of momentum points which are displayed explicitly,
whereas the interpolation is done via Chebychev polyno-
mials and serves to guide the eye. For the ghost spectral
function (and most of the gluon), this interpolation clearly
works also on a quantitative level; however, the interpola-
tion for the gluon in the region 0.5 < |p| < 0.7 GeV can
only be regarded as a qualitative one. Whereas the ghost
spectral function is dominated by the massless 1/p? pole in
the propagator, the gluon is clearly different. Its imaginary
part rises first, turns over and crosses through zero, turns
again, and then approaches zero from below at large time-
like momenta. The exact locations and heights of the
maxima in the positive and negative region cannot be
determined precisely within the present numerical accu-
racy. Nevertheless, the qualitative behavior is fixed from
the explicitly calculated points shown in the plot. The
gluon spectral function obeys the Oehme-Zimmermann
normalization condition [29]

Zt = fpg(s)ds, 3)

where Z; denotes the gluon wave function renormalization
constant, with a deviation of 10%. On top of this we expect
a systematic error of 20% based on the quality of our
truncation in the spacelike momentum region. This pro-
vides a measure on the accuracy achieved in the present
computation. The negative contributions to the gluon spec-
tral function indicate its absence from the asymptotic
spectrum of the theory. In general, the cuts in the ghost
and gluon propagators signal the radiation of unphysical
particles (ghosts and gluons) from unphysical particles. We
expect such a structure to be gauge-parameter independent.
Moreover, the gluon is certainly not a massive particle in
the usual sense. Nevertheless, one may be tempted to
define something like an “effective mass” m, for the gluon
from the location of the positive peak in the spectral
function. Within the present accuracy, we find

600 MeV < m, <700 MeV. (4)

We stress again, however, that m, is not a measurable
quantity; strictly speaking, it is just the scale where pos-
itivity violations in the gluon set in.

In this Letter we presented the first nonperturbative
solution of the gluon and ghost propagators in the complex
momentum plane together with an extraction of their
respective spectral functions. Our results agree with expec-
tations based on the corresponding Schwinger functions
discussed in Refs. [8,9]. We presented solutions for the
decoupling case; a comprehensive comparison with scaling
will be given elsewhere. Besides the considerable theoreti-
cal interest in these functions, they are also a necessary
input into the calculations of glueball masses within the
framework of Bethe-Salpeter equations. Corresponding
results will be detailed in a subsequent work.
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