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We study the large deviation statistics of the intensive work done by globally changing a control

parameter in a thermally isolated quantum many-body system. We show that, upon approaching a critical

point, large deviations well below the mean work display universal features related to the critical Casimir

effect in the corresponding classical system. Large deviations well above the mean are, instead, of

quantum nature and not captured by the quantum-to-classical correspondence. For a bosonic system we

show that in this latter regime a transition from exponential to power-law statistics, analogous to the

equilibrium Bose-Einstein condensation, may occur depending on the parameters of the quench and on the

spatial dimensionality.
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Introduction.—Recent experimental progress in the
physics of trapped ultracold atomic gases has stimulated
a growing interest in the nonequilibrium behavior of ther-
mally isolated quantum many-body systems [1]. A number
of aspects are presently being investigated experimentally,
ranging from the propagation of correlations after
quenches [2] to relaxation and prethermalization inferred
from the statistical fluctuations of the interference contrast
of split condensates [3]. On the theoretical side, a compel-
ling issue under investigation is that of the role played by
universality in the nonequilibrium dynamics [1], since
predictions independent of microscopic details make the
comparison with experiments a particularly stringent test.
Universal behavior can be investigated by studying either
the time dependence of correlation functions [4,5], in
particular close to criticality, or their statistical fluctuations
[6]. In this context, a number of studies have focused on
macroscopic thermodynamic variables such as work
[7–12] and entropy [13], exploring the emergence of uni-
versality in their statistical fluctuations.

Statistical fluctuations are known to provide insight into
the physics of classical equilibrium and nonequilibrium
systems [14]. The statistics of macroscopic extensive var-
iables exhibits a first, obvious form of universality associ-
ated to typical ‘‘small’’ fluctuations, which is however
rather insensitive to the underlying properties of the system
[14]. Indeed, as the mean of a generic extensive quantity
WN (e.g., the magnetization in a spin system) grows pro-
portionally to the number N of degrees of freedom, the one
of the associated intensive variable wN � WN=N (i.e., the
magnetization per unit volume) approaches a finite value
�w. The central limit theorem (when applicable) suggests

that the typical fluctuations of wN are suppressed�1=N1=2

and have a Gaussian distribution around �w. On the other
hand, large fluctuations, though rare, are capable of

probing the specific details of the physical system [14],
and they might provide valuable information on its univer-
sal behavior. In order for a large fluctuation to occur, an
extensively large number of microscopic fluctuating vari-
ables (i.e., the spin, in our example) has to deviate signifi-
cantly from their corresponding means and this happens
with a probability which is exponentially small in the
size N. Accordingly, for large N, one expects wN to be
distributed according to a probability density pðwÞ �
exp½�NIðwÞ�, where the so-called rate function IðwÞ
is non-negative, vanishes for w ¼ �w, and characterizes
the statistics of both large deviations and Gaussian
fluctuations.
Here, we show that the statistics of large deviations of

the intensive work w done during a global quench of a
thermally isolated quantum many-body system provides
insight into its universal properties. For a global quench,
one heuristically expects pðwÞ to feature a prominent
Gaussian peak centered at a finite mean �w. By focusing
on the tails of this distribution, we demonstrate that there is
a clear distinction between large deviations well below
(w � �w) and well above (w � �w) the mean. The former
are determined by the excess free energy fex of the dþ 1
dimensional classical correspondent in a film [5,9] and
acquire universal features close to a possible critical point.
The latter, instead, are genuinely quantum features, beyond
the quantum-to-classical correspondence, which may,
however, maintain some tracts of universality. Our analysis
encompasses as examples the cases of quenches in the
quantum Ising chain [7] and in a free bosonic system
[15]. In addition, we show that, depending on the space
dimensionality, the large deviation statistics of bosonic
systems displays a so-called condensation transition
(see, e.g., Ref. [16]), analogous to the Bose-Einstein
condensation.
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Statistics of the work.—Consider a quantum system with
N interacting degrees of freedom and Hamiltonian HðgÞ.
The extensive work WN performed on the system during
the quench g0 ! g is determined by the initial state, typi-
cally the ground state j�g0

0 i of Hðg0Þ, and by the eigenval-

ues Eg
n�0 and eigenvectors j�g

ni of the postquench

Hamiltonian HðgÞ. In particular, WN is a stochastic vari-
able with probability density [17,18]

pðWNÞ ¼
X
n�0

jh�g
nj�g0

0 ij2�ðWN � ðEg
n � Eg0

0 ÞÞ; (1)

where Eg
0 indicates generically the extensive ground-state

energy of HðgÞ. As p vanishes identically for WN below
Eg
0 � Eg0

0 , we refer WN to this threshold so that WN � 0.
The probability pðWNÞ can be conveniently studied via

its moment generating function

GðsÞ � he�sWN i; (2)

which for N ! 1, exists in the complex half-plane con-
taining Re s � 0 (with possible zeros, see e.g., Ref. [11]).
For later purposes, we distinguish here a class A of systems
in which WN for large but finite N cannot exceed a certain
extensive threshold NwM from the class B, encompassing
most of the real systems, within which WN can assume
arbitrarily large values. Generically, in class A, GðsÞ is
defined for all s 2 R with GðsÞ ’ e�sNwM for s ! �1,
whereas in class B, GðsÞ is defined only for s >��s < 0
with a generic singularity in its derivative at ��s. The
quantum Ising chain in a transverse field and the free
bosonic field belong to classes A and B, respectively.

The quantum-to-classical correspondence allows us to
interpret the moment generating function GðsÞ for s > 0 as
the partition function of a classical system in a film ge-
ometry [9]. Indeed, Eq. (1) implies

GðsÞ ¼ h�g0
0 je�s½HðgÞ�Eg

0
�j�g0

0 i; (3)

where h�g0
0 je�sHðgÞj�g0

0 i � ZN�s is in fact such a partition

function of the classical dþ 1-dimensional system with

transfer matrix e�HðgÞ corresponding to the quantum
Hamiltonian HðgÞ, in a film geometry with transverse
‘‘surface’’ area N, ‘‘thickness’’ s, and equal boundary
conditions set by j�g0

0 i. On the basis of ZN�s, one naturally

defines the free energy F N�s � � lnZN�s per kBT, where
T is the temperature of the corresponding classical system,
which depends on the parameters of HðgÞ. In terms of the
classical system, the variable s in Eq. (2) is the distance
between the two confining surfaces, which we assume to
have a large transverse area N. Upon increasing s, the free
energy density per unit area f decomposes in decreasing
powers of s as [19]

f � N�1F N�s ’ sfb þ 2fs þ corr:; (4)

where fb ¼ limN;s!1F N�s=ðNsÞ is the bulk free energy

density and fs is the surface free energy density, i.e.,
the energy cost for introducing separately each single

boundary into the otherwise bulk system. The corrections
‘‘corr.’’ in Eq. (4) vanish for s ! 1. In order to separate the
effects of confinement from the bulk behavior, one usually
introduces the so-called excess free energy density per unit
area fex � f� sfb, which plays a fundamental role in
what follows and becomes independent of N in the limit
of large N considered hereafter. In terms of the quantum
system, one finds from Eqs. (3) and (4) that fb ¼ Eg

0=N,

fs ¼ �ðlnjh�g0
0 j�g

0ijÞ=N [9], and therefore

GðsÞ ¼ e�NfexðsÞ: (5)

For s < 0, fex is defined in terms of GðsÞ by this equation,
and it lacks its thermodynamic interpretation.
Large deviations and universality.—Equation (5) is cru-

cial for understanding the emergence of universality in the
large deviations statistics of the intensive work wN ¼
WN=N. In fact, its distribution pðwÞ for N ! 1 can be
determined by a saddle-point approximation of the inverse
Laplace transform of GðsÞ, which actually provides a
heuristic derivation of the Gärtner-Ellis theorem [14]. In
particular, Eq. (5) implies that pðwÞ has the form
� exp½�NIðwÞ�, where the rate function IðwÞ is the
Legendre-Fenchel transform of fexðsÞ (and vice versa,
under certain assumptions [14])

IðwÞ ¼ � inf
s2R

fsw� fexðsÞg; (6)

in which the infimum is taken within the domain D of
definition of fexðsÞ andGðsÞ. Here, we assume that f0exðsÞ is
continuous inside D, i.e., that no first-order phase transi-
tions occur in the system.
The generic features of pðwÞ can now be inferred from

Eqs. (5) and (6). First, note that the excess free energy is
such that fexð0Þ ¼ 0 and f0exð0Þ ¼ �w. Most importantly,
fexðsÞ is a concave function of s [14], which approaches
2fs for s ! þ1. Figure 1 provides a sketch of fexðsÞ and
the corresponding IðsÞ for the two classes A and B intro-
duced above. The last two properties imply the existence of
a threshold in pðwÞ: the infimum in Eq. (6) for w< 0 is
�1, and consequently pðw< 0Þ ¼ 0. The behavior of
IðwÞ close to the threshold w * 0 instead is determined
by the one of fexðsÞ for s ! þ1 and in particular

FIG. 1 (color online). (a) Sketch of the excess free energy
density fexðsÞ and (b) of the corresponding rate function IðwÞ
for classes A (blue) and B (red) discussed in the main text. The
gray area highlights the range of variables for which fex has no
thermodynamic interpretation.
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Ið0Þ ¼ 2fs > 0, while the approach to it is determined by
the corrections fex � 2fs in Eq. (4).

The universality of these finite-size corrections close to
critical points [20] carries over into the large deviation
statistics of pðwÞ for w � �w. Indeed, if the postquench
Hamiltonian HðgÞ is close to a quantum critical point, the
finite-size corrections fex � 2fs to the free energy density
of the (near-critical) classical dþ 1-dimensional system,
which are responsible for the so-called critical Casimir
effect [20], take the universal scaling form s�d�ðs=�Þ
for s � a, where � � a is the correlation length and a
is some microscopic length scale. The scaling function �
is universal in the sense of critical phenomena [20], as it
depends only on the universality class of the classical
critical point. In addition, due to the presence of the
boundaries, � depends on their surface universality class
[21] or, equivalently, on which among the few effective
boundary (i.e., initial) states fj�	

i igi, j�g0
0 i flows to as the

critical point is approached. Once the scaling function� is
known, the rate function is calculated via Eq. (6). In
particular, if the postquench Hamiltonian is critical, then
� ¼ 1 and

Iðw & �Þ ¼ 2fs � dþ 1

d
�

�
w

�

�
d=ðdþ1Þ þ 
 
 
 (7)

with � ¼ dj�ð0Þj. While fs and the possible corrections
depend on the specific parameters of the initial state, the
leading dependence of IðwÞ on w is universal and non-
analytic. In the case of finite but large �, IðwÞ takes the
scaling form IðwÞ ¼ 2fs þ ��d#ðw�dþ1Þ, where #ðyÞ is
the Legendre-Fenchel transform of x�d�ðxÞ [and vice
versa, see Eq. (6)]. Note that # is as universal as �, and

the latter can be inferred from the former. For w �
��ðdþ1Þ, the approach to 2fs is eventually controlled by
�ðx � 1Þ ¼ Cxae�bx, where the universal constants a, b,
and C depend, along with �, on the bulk and surface
universality class of the transition, and they are known
for a variety of universality classes [20] (e.g., a ¼ �1=2,
b ¼ 2 for a quench of the quantum Ising chain within the

same phase [9]). In this case, one finds Iðw � ��ðdþ1ÞÞ ’
2fs � ð�=bÞw lnw�1 but with significant logarithmic cor-
rections. Note that the universal edge singularities of the
extensive work WN discussed in Ref. [9] collapse onto the
threshold when studied in terms of the intensive work wN .

To illustrate the discussion above, we focus on a free
bosonic theory described by a Hamiltonian diagonalizable
in independent momentum modes

HðmÞ ¼
Z ddk

ð2�Þd
�
1

2
�k��k þ 1

2
!2

k�k��k

�
; (8)

where ½�k;�k0 � ¼ i�k;k0 and the integral runs over the first

Brillouin zone jkij<�. We assume a relativistic disper-

sion relation!kðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
and consider quenches of

the mass from m0 to m [4,15]. HðmÞ captures the low-
energy properties of a number of physical systems,

including the ideal harmonic chain, interacting fermions
and bosons in one dimension [22], and it models the
relative phase fluctuations of split one-dimensional con-
densates [3]. HðmÞ has a critical point at m ¼ 0, and the
corresponding classical theory is that of a Gaussian field ’
in dþ 1 spatial dimensions and mass m. The quench is
characterized by �k � ½!kðm0Þ �!kðmÞ�=½!kðm0Þ þ
!kðmÞ�, and from Eqs. (1), (2), and (5) one finds [15]

fexðsÞ ¼ 1

2

Z ddk

ð2�Þd ln

�
1� �2

ke
�2!kðmÞs

1� �2
k

�
; (9)

which is defined for s >��s ¼ supkðlnj�kjÞ=!kðmÞ and, as
anticipated, belongs to class B. This fex can be decom-
posed as in Eq. (4), and upon approaching the critical point
m ¼ 0, i.e., for sufficiently large � ¼ m�1 and s, the
correction fexðsÞ � 2fs takes the (m0-independent) scaling
form s�d�Oðs=�Þ where �OðxÞ is the scaling function of
the critical Casimir effect for the classical field ’ with
boundaries belonging to the so-called ordinary surface
universality class [21], corresponding to Dirichlet bound-
ary conditions for ’. �O can be read, e.g., in Eq. (6.6) of
Ref. [23]. Accordingly, upon approaching the critical
point, the ground state j�m0

0 i of Hðm0Þ flows towards the
fixed-point state j�	

Oi corresponding to this surface uni-

versality class. However, as s decreases, fexðsÞ � 2fs cal-
culated from Eq. (9) is no longer independent of m0, and
corrections to the critical Casimir term arise. These cor-
rections are partly but effectively accounted for by chang-
ing s � sþ 2‘ext in the previous scaling form, where the
so-called extrapolation length ‘ext [21] here takes the value
of m�1

0 . Effectively, the fixed-point Dirichlet boundary

condition on ’ is realized at surfaces located outside the
film at a distance ‘ext from its boundaries, resulting in an
effective film thickness sþ 2‘ext [4,5,21]. This correction
is unnecessary for s, � � ‘ext, whereas it is increasingly
important as �, s, orm0 decrease. Figure 2 presents the rate
function IðwÞ (solid line) in d ¼ 1 for a quench from a

FIG. 2 (color online). Rate function IðwÞ (solid line) of the
work done on the lattice free bosonic theory in d ¼ 1 and unit
lattice spacing, for a quench from m0 ¼ 20 to the critical point.
In panel (a), the dashed curve corresponds to the Gaussian
distribution of small fluctuations around hwi ¼ �w. In panel (b),
the dash-dotted curve is the prediction of Eq. (7), whereas the
dashed curve also accounts for a nonvanishing ‘ext.
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noncritical point to the critical point. In panel (a), the
vertical dashed line indicates the mean work �w. The dashed
curve provides the quadratic approximation of IðwÞ around
w ¼ �w, which describes the Gaussian distribution of the
small fluctuations. While additional features of IðwÞ are
rationalized further below, panel (b) focuses on the region
of small w, where universality is expected to emerge. The

dash-dotted line corresponds to Eq. (7), with �Oð0Þ ¼
��ðdÞ�ðdþ 1Þ=½ð16�Þd=2�ðd=2Þ� [23]. This universal
behavior sets in rather close to the threshold. However,
the agreement between IðwÞ and Eq. (7) extends to a wider
range by accounting for the correction due to ‘ext (dashed
curve). The features displayed in Fig. 2 for m ¼ 0 carry
over to the casem � m0, which requires the knowledge of
the full scaling function �OðxÞ. For a fixed value of m,
instead, the corrections to the scaling behavior due to ‘ext
increase upon decreasing m0 and eventually, after crossing
the line m ¼ m0 of no quench, they lead to a change in the
effective boundary state [5,9] for m0 ! 0.

Quantum regime and condensation.—Let us now con-
sider the case of large work w � �w. Upon increasing w
further from the threshold, the value s	ðwÞ of s for which
the infimum in Eq. (6) is attained and which satisfies
f0exðs	ðwÞÞ ¼ w decreases and so does the thickness of
the corresponding film. The behavior of such a film is
expected to become increasingly dominated by its micro-
scopic details, with a generic lack of universality even
close to the critical point. Correspondingly, I decreases
because I0ðwÞ ¼ �s	ðwÞ. Forw ¼ �w, s	 ¼0 and Iðw ¼ �wÞ
vanishes, whereas it grows again for w> �w, with
s	ðwÞ< 0 (see Fig. 1). The rate function for w> �w is
thus determined by fexðsÞ for s < 0 (‘‘negative’’ film thick-
ness), which lacks a thermodynamic interpretation because
the quantum-to-classical correspondence does not hold in
this case. The qualitative behavior of Iðw> �wÞ depends
crucially on the class the system belongs to. In Fig. 1 we
report a sketch of (a) fexðsÞ and (b) the associated rate
function I corresponding to classes A and B discussed
above and characterized by (A) a bound (e.g., the quantum
Ising chain) or (B) an unbound spectrum (e.g., free bosonic
theory). In particular, in case A, IðwÞ diverges upon
approaching wM, with Iðw>wMÞ ¼ þ1 as required by
the fact that pðwÞ vanishes above the intensive threshold
wM. In case B, instead, Iðw ! 1Þ ’ �sw and therefore
pðw � �wÞ � e�N �sw. This is seen in Fig. 2(a), though the
asymptotic linear behavior for w � 1, with slope �s (indi-
cated by the dashed line) is actually approached only for
rather large values ofw. In general, �s is system specific and
depends on the parameters of the quench.

Even though the emergence of universality is apparently
limited to w � �w, systems belonging to class B might
display unexpected universal properties in the fully quan-
tum regime w> �w. Indeed, the statistics of the work done
on the free bosonic theory in Eq. (8) display, for m0 ! 0, a
behavior analogous to the Bose-Einstein condensation of

the ideal gas in the grand canonical ensemble. This implies
a transition in the large deviation statistics for w> �w from
exponential to algebraic. In fact, we note that the excess
free energy fexðsÞ in Eq. (9) has the same form as half the
scaled cumulant generating function c ðsÞ of the fluctua-
tions of the spatial density �V of ideal Bose particles (of
mass mB) within a large region of volume V. At equilib-
rium in an ensemble with chemical potential � � 0 (in
units of temperature 	�1), one finds c ðsÞ ¼ R

ddk=ð2�Þd
ln½ð1��ke

�sÞ=ð1��kÞ�, where �k ¼ e�	"kþ� with
"k ¼ @

2k2=ð2mBÞ and the integral is over Rd.
Accordingly, the plot of c ðsÞ has the form B in
Fig. 1(a), with �s ¼ ��. For the ideal Bose gas, the con-
densation occurs as � ! �c ¼ 0: the asymptotic slope
�s ¼ �� of the rate function Ið� > ��Þ vanishes together
with the function itself [see Fig. 1(b)]. The mean value
�� ¼ h�i ¼ c 0ð0Þ above which this happens is the critical
density for condensation �c ¼ l�d�ðd=2Þ [24], which is

finite only for d > dc ¼ 2, where l � ð2�	@2=mBÞ1=2 is
the thermal wavelength. I vanishes for � > �c because the
probability pð�Þ acquires an algebraic dependence on �
due to the contributions of fluctuations in single-particle
states with small k, and indeed the momenta hð�� ��Þni
with n � d=2 diverge as � ! �c; e.g., hð��Þ2i /
ð��Þ�
, where 
 ¼ 2� d=2 for d < 4.
For the statistics of the work, m0 plays a role similar to

�, although the occupation of the energy levels is deter-
mined by the nonthermal distribution generated by the
quench and not by the Bose statistics. In fact, both m0

and � determine the k dependence of �2
k’0 and �k’0,

respectively, on which the onset of the condensation
depends. In the case of the intensive work,m0 is the control
parameter: for m0 ! 0, hwi is finite for d > d0c ¼ 1 with a
corresponding ‘‘critical value’’ wcðmÞ. The emergence of
d0c � dc is due to the fact that the dependence of �2

k’0
on k crosses over from quadratic for m0 � 0 to linear for
m0 ¼ 0. Analogous crossover occurs in the condensation
of an ideal Bose gas with relativistic dispersion [25].
The rate function IðwÞ vanishes identically for w>wc,
and pðwÞ acquires an algebraic dependence on w
because of the slow asymptotic decay of the probability
distribution of the work done on modes with small k
values, which are mildly confined in the initial state with
m0 ! 0. As a result, moments hðw� �wÞni with n � d
diverge in this limit with, e.g., hð�wÞ2i / lnðm=m0Þ in
d ¼ 2.
Conclusions.—We discussed the qualitative features of

the large deviation statistics of the work done during a
quantum quench, highlighting the emergence of universal-
ity and, for bosonic systems, of a nonthermal condensation
transition. Even though large fluctuations are exponentially
rare as the system size increases, the value of the rate
function Ið0Þ can be reduced by a suitable choice of the
quench parameters, making them observable by a postse-
lection of experimental data.
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