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Matthias Kleinmann,1,* Costantino Budroni,1,2,† Jan-Åke Larsson,3,‡ Otfried Gühne,1,§ and Adán Cabello2,k
1Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, D-57068 Siegen, Germany

2Departamento de Fı́sica Aplicada II, Universidad de Sevilla, E-41012 Sevilla, Spain
3Institutionen för Systemteknik, Linköpings Universitet, SE-58183 Linköping, Sweden

(Received 19 April 2012; published 19 December 2012)

Contextuality is a natural generalization of nonlocality which does not need composite systems or

spacelike separation and offers a wider spectrum of interesting phenomena. Most notably, in quantum

mechanics there exist scenarios where the contextual behavior is independent of the quantum state. We

show that the quest for an optimal inequality separating quantum from classical noncontextual correla-

tions in a state-independent manner admits an exact solution, as it can be formulated as a linear program.

We introduce the noncontextuality polytope as a generalization of the locality polytope and apply our

method to identify two different tight optimal inequalities for the most fundamental quantum scenario

with state-independent contextuality.
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Introduction.—The investigation of the operational dif-
ferences between quantum mechanics and classical me-
chanics resulted in the discovery of Bell’s inequalities [1].
Such inequalities constrain the correlations obtained from
spacelike-separated measurements and are satisfied by
any local hidden variable (HV) model but are violated by
quantum mechanics. For every measurement scenario,
there exists a minimal set of inequalities, called tight Bell
inequalities, which also provide sufficient conditions: If
all tight inequalities are satisfied, then there exists a
local HV model reproducing the corresponding set of
correlations [2,3].

Mathematically speaking, each tight Bell inequality cor-
responds to a facet of the locality polytope [3]. This means
that it is a (p� 1)-dimensional face of the p-dimensional
polytope obtained as a convex hull of the vectors represent-
ing local assignments to the results of the considered
measurements. Such a polytope gives all classical proba-
bilities associated with a local model for a given measure-
ment scenario, and its facets give precisely the boundaries
of the polytope. In this sense, tight inequalities separate
classical from nonclassical correlations perfectly.

Similarly, noncontextuality inequalities [4–6] are con-
straints on the correlations among the results of compatible
observables, which are satisfied by any noncontextual HV
model. While the violation of Bell inequalities reveals
nonlocality, the violation of noncontextuality inequalities
reveals contextuality [7,8], which is a natural generaliza-
tion of nonlocality privileging neither composite systems
(among other physical systems), nor spacelike-separated
measurements (among other compatible measurements),
nor entangled states (among other quantum states).

All Bell inequalities are noncontextuality inequalities,
but there are two features of noncontextuality inequalities
which are absent in Bell inequalities. One is that non-
contextuality inequalities may be violated by simple

quantum systems such as single qutrits [4]. These viola-
tions have recently been experimentally observed with
photons [9]. The other is that the violation can be indepen-
dent of the quantum state of the systems [5,6]; thus, it
reveals state-independent contextuality (SIC). The latter
has been demonstrated recently with ququarts (four-level
quantum systems) using ions [10], photons [11], and nu-
clear magnetic resonance [12].
The notion of tightness naturally also applies to

noncontextuality inequalities. Tight noncontextuality
inequalities are the facets of the correlation polytope
of compatible observables, as we will explain below.
Compared with the locality polytope, the difference is in
the notion of compatibility, since now one no longer con-
siders only collections of spacelike-separated measure-
ments but admits more generally the measurement of a
context, i.e., a collection of mutually compatible measure-
ments. For a given contextuality scenario, the correspond-
ing set of tight inequalities gives necessary and sufficient
conditions for the existence of a noncontextual model.
For example, the three inequalities with state-

independent violation introduced in Ref. [5] are all tight.
These inequalities are only violated for ququarts (two of
the inequalities) and eight-level quantum systems (the third
inequality), but not for qutrits. Another example of a tight
inequality is the noncontextuality inequality for qutrits of
Klyachko et al. [4], which indeed was derived by means of
the correlation polytope method. However, this latter
inequality does not have a state-independent quantum
violation.
Obtaining all tight inequalities is, in general, a hard task.

The correlation polytope is characterized by the number of
settings and outcomes of the considered scenario. While
there are algorithms that find all the facets of a given
polytope, the time required to compute them grows expo-
nentially as the number of settings increases. Therefore,
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this method can only be applied to simple cases with a
reduced number of settings [2,4,13]. Given the facets of the
polytope, in a next step one can try to find quantum
observables that exhibit a maximal gap between the maxi-
mal noncontextual value and the quantum prediction.

In this Letter we approach the problem differently. For
many situations, the quantum observables are already
known, and it remains to find inequalities that are tight
and optimal and, in addition, may exhibit SIC. Thus we
first describe the noncontextuality polytope for a given set
of observables and a given list of admissible contexts. A
noncontextuality inequality is then an affine hyperplane that
does not intersect this polytope.We then introduce amethod
for maximizing the state-independent quantum violation
via linear programing. The resulting linear program can
be solved with standard optimization routines, and the
optimality of the solution is guaranteed. As an application
we derive the optimal inequality for several state-
independent scenarios, in particular, analyzing a recently
discovered qutrit scenario [14]. Using our method, we find
noncontextuality inequalities with state-independent viola-
tion and the fewest number of observables and contexts.
These inequalities turn out to be, in addition, tight and hence
provide themost fundamental examples of inequalities with
state-independent violation.

Contextuality scenarios, the noncontextuality polytope,
and noncontextuality inequalities.—We start from some
given dichotomic [15] quantum observables A1, A2; . . . ; An.
A context c is then a set of indices, such that Ak and A‘ are
compatible whenever k, ‘ 2 c, i.e., ½Ak; A‘� ¼ 0. For ex-
ample, ifA1 andA2 are compatible, thenvalid contextswould
be f1g, f2g, and f1; 2g. As we see below, it may be interesting
to consider only a certain admissible subsetC of the set of all
possible contexts fcg. The observables A1; . . . ; An, together
with the list of admissible contextsC, form the contextuality
scenario.

The set of all (contextual as well as noncontextual)
correlations for such a scenario can be represented by the
following standard construction. We first use that, if Ak and
A‘ are compatible, then the expectation value of Ak is not
changed whether or not A‘ is measured in the same con-
text. Thus, instead of considering all correlations, it suffi-
ces to only consider the vector ~v ¼ ðvcjc 2 CÞ, where vc is

the expectation value of the product of the values of the
observables indexed by c. For example, for the contexts f1g,
f2g, f1; 2g, a contextual HV model may with equal proba-
bility assign the values fþ1g, fþ1g, f�1;þ1g, or f�1g,
f�1g, fþ1;�1g, respectively, yielding ~v � ðv1; v2; v1;2Þ ¼
ð1=2; 1=2;�1Þ.

In the simplest noncontextual HV model, however, each
observable has a fixed assignment ~a � ða1; . . . ; anÞ 2
f�1; 1gn for the observables A1; . . . ; An, and accordingly
each entry in ~v is exactly the product of the assigned values,
i.e., vc ¼

Q
k2cak. The most general noncontextual HV

model predicts fixed assignments ~aðiÞ with probabilities

pi, and hence the set of correlations that can be explained
by a noncontextual HV models is characterized by the
convex hull of the models with fixed assignments, thus
forming the noncontextuality polytope.
Then, a noncontextuality inequality is an affine bound

on the noncontextuality polytope, i.e., a real vector ~� such

that � � ~� � ~v for all correlation vectors v that originate
from a noncontextual model:

� � X

c2C

�c

Y

k2c

ak; (1)

for any assignment ~a � ða1; . . . ; anÞ 2 f�1; 1gn.
In quantum mechanics, in contrast, the measurement

of the entry vc corresponds to the expectation value

hQk2cAki�, where � specifies the quantum state. Thus

the value of ~� � ~v predicted by quantummechanics is given

by hTð ~�Þi�, with
Tð ~�Þ ¼ X

c2C

�c

Y

k2c

Ak: (2)

If the expectation value exceeds the noncontextual limit �,
then the inequality demonstrates contextual behavior,
yielding the quantum violation

V ¼ max�hTð ~�Þi�
�

� 1: (3)

An inequality is optimal if the violation is maximal for
the given contextuality scenario. In general, this optimiza-
tion is difficult to perform and it is not always clear that
an optimal inequality also yields the most significant
violation [16].
Optimal state-independent violation and tight inequal-

ities.—However, if we require a state-independent viola-

tion of the inequality, without loss of generality, Tð ~�Þ ¼ 1,
and hence the optimization over the quantum state %

vanishes. Then, the coefficient vector ~� and the noncon-
textuality bound � are optimal if � is minimal under

the constraint Tð ~�Þ ¼ 1 and if the inequalities in Eq. (1)

are satisfied. That is, we ask for a solution (��, ~��
) of the

optimization problem

minimize: �;

subject to: Tð ~�Þ ¼ 1and� � X

c2C

�c

Y

k2c

ak for all ~a (4)

This optimization problem is a linear program and such
programs can be solved efficiently by standard numerical
techniques and optimality is then guaranteed. We imple-
mented this optimization using CVXOPT [17] for PYTHON,
which allows us to study inequalities with up to n ¼ 21
observables and jCj ¼ 131 contexts. Note that this pro-
gram also solves the feasibility problem, whether a con-
textuality scenario exhibits SIC at all. This is the case, if
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and only if, the program finds a solution with �< 1 and
thus V > 0.

The optimal coefficients ~��
are, in general, not unique

but rather form a polytope defined by Eq. (1) with � ¼ ��.
This leaves the possibility to find optimal inequalities with
further special properties. There are at least two important
properties that one may ask for. Firstly, from an experi-
mental point of view, it would be desirable to have some of
the coefficients �c ¼ 0, since then the context c does not

need to be measured. Which coefficients �c ¼ 0 yield the

greatest advantage will depend, in general, on the experi-
mental setup. For the sequential measurement schemes it is
natural to choose the longest measurement sequences.
Secondly, there might be tight inequalities among the
optimal solutions: An inequality is tight if the affine hy-

perplane given by the solutions of � ¼ ~� � ~x is tangent to a
facet of the noncontextuality polytope. This property can
be readily checked using Pitowsky’s construction [3]:
Denote by p the affine dimension of the noncontextuality
polytope and choose those assignments ~a, for which
Eq. (1) is saturated. Then, the inequality is tangent to a
facet if and only if the affine space spanned by the vertices
~v � ðQk2cakjc 2 CÞ is (p� 1)-dimensional.

Furthermore, we mention that the condition of state
independence might be loosened to only require that the
quantum violation is at least V for all quantum states.

This corresponds to replacing the condition Tð ~�Þ ¼ 1 by

the condition that Tð ~�Þ � 1 is positive semidefinite. Then,
the linear program in Eq. (4) becomes a semidefinite pro-
gram, which can still be solved by standard numerical
methods with optimality guaranteed. However, for the
examples that we consider in the following, the semidefin-
ite and the linear program yield the same results.

Most fundamental noncontextuality inequalities.—We
now apply our method to the SIC scenario for a qutrit
system introduced by Yu and Oh [14]. Qutrit systems are
of fundamental interest, since no smaller quantum system
can exhibit a contextual behavior [8]. It has been shown
that this scenario is the simplest possible SIC scenario for a
qutrit [18].

For a qutrit system, the dichotomic observables are of
the form

Ai ¼ 1� 2jviihvij: (5)

In the Yu-Oh (YO) scenario, there are 13 observables
defined by the 13 unit vectors jvii provided in Fig. 1. In
the corresponding graph, each operator is represented by
node i 2 V of the graphG ¼ ðV;EÞ, and an edge ði; jÞ 2 E
indicates that jvii and jvji are orthogonal, hvjjvii ¼ 0, so

that Ai and Aj are compatible. The original inequality takes

into account all contexts of size one and two, CYO ¼
ff1g; . . . ; fDgg [ E and the coefficients were chosen to �c ¼
�3=50 if c 2 E and �c ¼ 6=50 otherwise. This yields an

inequality with a state-independent quantum violation of
V ¼ 1=24 � 4:2%.
With the linear program we find that the maximal vio-

lation for the contexts CYO isV ¼ 1=12 � 8:3% and thus
twice that of the inequality in Ref. [14]. Interestingly,

among the optimal coefficients ~��
there is a solution which

is tight and for which the coefficient �4;7 vanishes,

cf. Table I, column ‘‘opt2’’ for the list coefficients. We
find that, up to symmetries, �4;7 is the only context that can

be omitted while still preserving optimality.
In order to demonstrate the practical advantage, let

us discuss the recent experimental values obtained for the
Yu-Oh scenario ([19], Fig. 2). For those values, the original
Yu-Oh inequality is violated by 3.7 standard deviations.
But if the same data are evaluated using our optimal
inequality ‘‘opt2,’’ the violation increases to 7.5 standard
deviations. We mention, however, that the particular
experimental setup implements the same observable in
different contexts differently, thus easily allowing a non-
contextual HV model explaining the data [20]. A setup
avoiding such problems is described in Ref. [21].
The maximal contexts in the Yu-Oh scenario are of size

three, and hence it is possible to also include the corre-
sponding terms in the inequality; i.e., we extend the con-
texts CYO by the contexts f1; 2; 3g, f1; 4; 7g, f2; 5; 8g, and
f3; 6; 9g. Since this increases the number of parameters in
the inequality, there is a chance that this case allows an
even higher violation. In fact, the maximal violation is
V ¼ 8=75 � 10:7%. Again, it is possible to find tight
inequalities with vanishing coefficients, and in particular,
the context f1; 2; 3g can be omitted; the list of coefficients is
given in Table I, column ‘‘opt3.’’
Further examples.—Our method is applicable to all SIC

scenarios, providing the optimal inequality. We mention
two further examples. (i) The ‘‘extended Peres-Mermin
square’’ uses as observables all 15 products of Pauli

FIG. 1. Graph of the compatibility relations between the ob-
servables for the Yu-Oh scenario. Nodes represent vectors jvii
[or the observables Ai defined in (5)] and edges represent
orthogonality (or compatibility) relations.
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operators on a two-qubit system, (�� � ��) [22]. The

optimal violation is V ¼ 2=3, where only contexts of
size three need to be measured and �c ¼ 1=15, except

�xx;yy;zz ¼ �xz;yx;zy ¼ �xy;yz;zx ¼ �1=15. Among the opti-

mal solutions no simpler inequality exists. (ii) The 18
vector proof [23] of the Kochen-Specker theorem uses a
ququart system and 18 observables of the form (5). For
contexts up to size two the maximal violation is V ¼
1=17 � 5:9% (cf. Ref. [24]), while including all contexts
the maximal violation isV ¼ 2=7 � 28:6% (cf. Ref. [5]).
The situation where only contexts up to size three are
admissible has not yet been studied and we find numeri-
cally a maximal violation of V � 14:3%.

Conclusions.—Contextuality is suspected to be one of
the fundamental phenomena in quantum mechanics. While
it can be seen as the underlying property of the nonlocal
behavior of quantum mechanics, so far no methods for a
systematic investigation have been developed. We showed
here that Pitowsky’s polytope naturally generalizes to the
noncontextual scenario, and hence the question of a full
characterization of this noncontextuality polytope arises.
This can be done via the so-called tight inequalities. On the
other hand, among the most striking aspects where con-
textuality is more general than nonlocality is that the
former can be found to be independent of the quantum
state. For this state-independent scenario, we showed that
the search for the optimal inequality reduces to a linear
program, which can be solved numerically with optimality
guaranteed. We studied several cases of this optimization
and find that in all those instances one can construct non-
contextuality inequalities with a state-independent viola-
tion that are, in addition, tight. This is, in particular,
the case for the most fundamental scenario of state-
independent contextuality [14], and we presented two
essentially different inequalities—one involves at most
contexts of size two, the other of size three. We hence
lifted the Yu-Oh scenario to the same fundamental status as
the Clauser-Horne-Shimony-Holt Bell inequality [25],

which is the simplest scenario for nonlocality. Our state-
independent tight inequalities are particularly suitable for
experimental tests, and hence we expect that they stimulate
experiments to finally observe SIC in qutrits [21].
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