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We reveal the nature of the avalanche collapse of the giant viable component in multiplex networks

under perturbations such as random damage. Specifically, we identify latent critical clusters associated

with the avalanches of random damage. Divergence of their mean size signals the approach to the hybrid

phase transition from one side, while there are no critical precursors on the other side. We find that this

discontinuous transition occurs in scale-free multiplex networks whenever the mean degree of at least one

of the interdependent networks does not diverge.
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Many complex systems, both natural [1] and man made
[2,3], can be represented as multiplex or interdependent
networks. Multiple dependencies make a system more
fragile: damage to one element can lead to avalanches of
failures throughout the system [4,5]. Recent theoretical
investigation of two [6] or more [7] networks in which
vertices in each network mutually depend on vertices in
other networks has shown that indeed small initial failures
can cascade back and forth through the networks, leading
to a discontinuous collapse of the whole system. Damage
in one network propagates along edges and leads to dam-
age in the other network. This is an individual stage of a
cascade in back-and-forth damage propagation. Son et al.
[8] showed that this approach can be simplified and is
equivalent to considering damage propagation in multiplex
networks. They proposed a simple mapping between the
model used in Ref. [6] in which a vertex in one network has
a mutual dependence on exactly one vertex in the other
network, and a multiplex network with one kind of vertex
but two kinds of edges. The mapping is achieved by simply
merging the mutually dependent vertices from the two
networks.

In this Letter we describe the nature of such discontinu-
ous phase transitions. We consider a set of vertices con-
nected by m different types of edges (dependencies). The
connections are essential to the function of each site, so
that a vertex is only viable if it maintains connections of
every type to other viable vertices. A viable cluster is
defined as follows: For every kind of edge, and for any
two vertices i and j within a viable cluster, there must be a
path from i to j following only edges of that kind. A graph
containing two finite viable clusters is illustrated in Fig. 1.
We wish to find when there is a giant cluster of viable
vertices. Note that any giant viable cluster is a subgraph of
the giant connected component of each of the m networks.

Various parameters can be used to control the critical
behavior of this system: the mean degrees of the networks,
amount of random damage, and so on. Small perturbations
to the system can propagate, leading to avalanches of

further damage. In uncorrelated, random networks we
find a discontinuous hybrid transition in the collapse of
the giant viable cluster, similar to that seen in the k-core or
bootstrap percolation [9,10]. In Ref. [6], the propagation of
damage caused by removal of a finite fraction of vertices in
one of the interdependent networks was studied. In con-
trast, we study the avalanches of damage triggered by the
removal of randomly chosen single vertices. These ava-
lanches increase in size approaching the critical point,
signaling the impending collapse of the giant viable cluster.
At the critical point the mean avalanche size diverges.
Below the transition, on the other hand, there is no pre-
cursor for the appearance of the giant viable cluster. The
transition is thus asymmetric. It is hybrid in nature, having
a discontinuity like a first-order transition, but exhibiting
critical behavior, only above the transition, like a second-
order transition. A complete understanding of the transi-
tion cannot therefore be had without first understanding
this critical behavior. We have discovered critical clusters
which collapse in avalanches of diverging size as the
transition is approached. These critical clusters are thus
responsible for both the critical scaling and the disconti-
nuity observed in the size of the giant viable cluster. As we
shall see, the critical clusters have a novel character as,
unlike the corona clusters of the k-core; for example [9],
avalanches propagate in a directed way through critical
clusters. The critical clusters may have important practical
applications, helping to identify vulnerabilities to targeted
attack, as well as informing efforts to guard against such
attack. Surprisingly, when the degree distributions are

FIG. 1 (color online). A small network with two kinds of edges
(left). Applying the algorithm described in the text, nonviable
vertices are removed leaving two viable clusters (right).
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asymptotically power laws PðqÞ / q�� the critical point pc

(taking the undamaged fraction of vertices p as the control
parameter) remains at a finite value even when the expo-
nents � of the degree distributions are below 3, remaining
finite until both exponents reach 2, in agreement with an
argument given in Ref. [6]. This is in stark contrast to
ordinary percolation in complex networks, in which the
threshold falls to zero as soon as � reaches 3 [11,12]. We
show, further, that the nature of the transition doesn’t
change. Although the height of the discontinuity becomes
extremely small near � ¼ 2, it remains finite near this limit
(see Fig. 2).

Algorithm.—We consider a multiplex network, with ver-
tices i ¼ 1; 2; . . . ; N connected bym kinds of edges labeled
s ¼ a; b; . . . . The joint degree distribution is Pðqa; qb; . . .Þ.
Viable clusters in any multiplex network may be identified
by the following algorithm. (i) Choose a test vertex i at
random from the network. (ii) For each kind of edge s,
compile a list of vertices that can be reached from i by
following only edges of type s. (iii) The intersection of
these m lists forms a new candidate set for the viable
cluster containing i. (iv) Repeat steps (ii) and (iii) but
traversing only the current candidate set. When the candi-
date set no longer changes, it is either a viable cluster, or
contains only vertex i. (v) To find further viable clusters,
remove the viable cluster of i from the network (cutting any
edges) and repeat steps (i)–(iv) on the remaining network
beginning from a new test vertex.

Repeated application of this procedure will identify
every viable cluster in the network. The application of
this procedure to a finite graph is illustrated in Fig. 1.

Basic equations.—Let us consider the case of sparse
uncorrelated networks, which are locally treelike in the
infinite size limit N ! 1. In such a network there are no
finite viable clusters. In order to find the giant viable
cluster, we define Xs, with s 2 fa; b; . . .g, to be the proba-
bility that, on following an arbitrarily chosen edge of

type s, we encounter the root of an infinite subtree formed
solely from type s edges, whose vertices are also each
connected to at least one infinite subtree of every other
type. We call this a type s infinite subtree. The vector
fXa; Xb; . . .g plays the role of the order parameter. A vertex
is then in the giant viable cluster if it has at least one edge
of every type s leading to an infinite type s subtree (proba-
bility Xs), as shown in Fig. 3(a). Using the locally treelike
property of the networks, we can write self-consistency
equations for the probabilities Xs:

Xs ¼ �sðXa; Xb; . . .Þ
� X

qa;qb;...

qs
hqsiPðqa; qb; . . .Þ½1� ð1� XsÞqs�1�

�Y
l�s

½1� ð1� XlÞql� (1)

for each s 2 fa; b; . . .g. This is illustrated in Fig. 4. The
term ðqs=hqsiÞPðqa; qb; . . .Þ gives the probability that on
following an arbitrary edge of type s, we find a vertex with
degrees qa; qb; . . . , while ½1� ð1� XaÞqa� is the probabil-
ity that this vertex has at least one edge of type a � s
leading to the root of an infinite subtree of type a edges
(i.e., probability Xa). This becomes ½1� ð1� XsÞqs�1�
when a ¼ s. The argument leading to Eq. (1) is similar
to that used in Ref. [8]. Solving these equations enables us
to calculate all the quantities of interest. In particular, the
relative size of the giant viable cluster is

S ¼ X
qa;qb;...

Pðqa; qb; . . .Þ
Y

s¼a;b;...

½1� ð1� XsÞqs�; (2)

which is illustrated in Fig. 3(a).
A hybrid transition appears at the point where

�sðXa;Xb; . . .Þ first meets Xs at a nonzero value, for all s.
This occurs when

det½J� I� ¼ 0; (3)

where I is the unit matrix and J is the Jacobian matrix
Jab ¼ @�b=@Xa. Expanding�s about the critical point, at
which Eqs. (1) and (3) are both satisfied, we find the
scaling of Xs and hence S, the size of the giant viable
cluster. For example, random damage can be considered by
introducing a parameter p, the fraction of vertices remain-
ing undamaged. This is incorporated by multiplying the
right-hand sides of Eqs. (1) and (2) by a factor p. Then

FIG. 2 (color online). Size of the giant viable cluster S as a
function of the fraction p of vertices remaining undamaged for
two symmetric power-law distributed networks with, from right
to left, � ¼ 2:8, 2.5, and 2.1. The height of the jump becomes
very small as � approaches 2, but is not zero, as seen in the inset,
which is S vs p on a logarithmic vertical scale for � ¼ 2:1.

FIG. 3 (color online). Viable and critical viable vertices for
two interdependent networks. (a) A vertex is in the giant viable
cluster if it has connections to giant viable subtrees (represented
by infinity symbols) of both kinds. (b) A critical viable vertex of
type a has exactly 1 connection to a giant subtree of type a.
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S � Sc / Xs � XðcÞ
s / ðp� pcÞ1=2: (4)

A similar result is found for other control parameters.
Avalanches.—To examine the hybrid transition we focus

on the case of two types of edges. Consider a viable vertex
that has exactly one edge of type a leading to a type a
infinite subtree, and at least one edge of type b leading type
b infinite subtrees. We call this a critical vertex of type a. It
is illustrated in Fig. 3(b). Critical vertices of type a will
drop out of the viable cluster if they lose their single link to
a type a infinite subtree. We mark these special edges with
an arrow leading to the critical vertex. An avalanche can
only transmit in the direction of the arrows. A vertex may
have outgoing edges of this kind, so that removal of this
vertex from the giant viable cluster also requires the
removal of the critical vertices which depend on it. For
example, in Fig. 5, removal of the vertex labeled 1 removes
the essential edge of the critical vertex 2 which thus
becomes nonviable. Removed critical viable vertices may
in turn have outgoing critical edges, so that the removal of
a single vertex can result in an avalanche of removals of
critical vertices from the giant viable cluster. In Fig. 5,
removal of 2 causes the removal of further critical vertices
3 and 4, and the removal of 4 then requires the removal of
5. Thus critical vertices form critical clusters. At the head
of each critical cluster is a ‘‘keystone vertex’’ (e.g., vertex
1 in the figure) whose removal would result in the removal
of the entire cluster. Graphically, upon removal of a vertex,
we remove all vertices found by following the arrowed
edges. As we approach the critical point (from above),

diverging avalanches cause a discontinuity in the size of
the giant viable cluster, which collapses to zero.
There are three possibilities when following an arbi-

trarily chosen edge of a given type: (i) with probability
Xs we encounter a type s infinite subtree; (ii) with proba-
bility Rs we encounter a vertex which has a connection to
an infinite subtree of the opposite type, but none of the
same type. Such a vertex is part of the giant viable cluster if
the parent vertex was; or (iii) with probability 1� Xs � Rs,
we encounter a vertex which has no connections to infinite
subtrees of either kind. The probability Ra obeys

Ra ¼ X
qa

X
qb

qa
hqaiPðqa; qbÞð1� XaÞqa�1½1� ð1� XbÞqb�;

(5)

and similarly for Rb. We use generating functions to exam-
ine the sizes of critical clusters. We first define the function
Faðx; yÞ as

Faðx; yÞ ¼
X
qa

X
qb

qa
hqaiPðqa; qbÞx

qa�1
Xqb
r¼1

qb
r

� �
Xr
by

qb�r;

(6)

and similarly for Fbðx; yÞ, by exchanging all subscripts a
and b. The generating function for the size of an avalanche
triggered by removing an arbitrary type a edge which does
not lead to an infinite type a subtree can be defined in terms
of these functions by

Haðu;vÞ¼ 1�Xa�RaþuFa½Haðu;vÞ;Hbðu;vÞ� (7)

and similarly for Hbðu; vÞ. This recursive equation can be
understood by noting that Hað0; vÞ ¼ 1� Xa � Ra is the
probability that an arbitrarily chosen edge leads to a vertex
outside the viable cluster. Here u and v are auxiliary
variables. Following through a critical cluster, a factor u
appears for each arrowed edge of type a, and v for each
arrowed edge of type b. For example, the critical cluster
illustrated in Fig. 5 contributes a factor u2v2. The mean
number of critical vertices reached upon following an edge
of type a, i.e., the mean size of the resulting avalanche if
this edge is removed, is given by @uHað1; 1Þ þ @vHað1; 1Þ.
Unbounded avalanches emerge at the point where
@uHað1; 1Þ [or @vHbð1; 1Þ] diverges. Taking derivatives
of Eq. (7), and using that Hað1; 1Þ ¼ 1� Xa and
Fað1�Xa;1�XbÞ¼Ra, and that, from Eqs. (1) and (6),
@xFað1� Xa; 1� XbÞ ¼ @a�aðXa; XbÞ and @yFað1� Xa;

1� XbÞ ¼ ðhqai=hqbiÞ@a�bðXa; XbÞ, gives

@uHað1; 1Þ ¼ Ra½1� @b�bðXa; XbÞ�
det½J� I� : (8)

From Eq. (3) we see immediately that this diverges at the
critical point, meaning that the mean size of avalanches
triggered by random removal of vertices diverges exactly at
the point of the hybrid transition. The mean size of the
avalanches can be related to the susceptibility, of the giant

FIG. 5 (color online). A critical cluster. Removal of any of the
shown viable vertices will result in the removal of all down-
stream critical viable vertices. Removal of the vertex labeled 1
will result in all of the shown vertices being removed (becoming
nonviable), while removal of vertex 4 results only in vertex 5
also being removed.

FIG. 4. Diagrammatic representation of Eq. (1) in a system of
two interdependent networks a and b. The probability Xa,
represented by a shaded infinity symbol, can be written recur-
sively as a sum of second-neighbor probabilities. Open infinity
symbols represent the equivalent probability Xb for network b,
which obeys a similar recursive equation.
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viable cluster to random damage, similar to the suscepti-
bility for ordinary percolation [13].

Because of the similarity of Eq. (4) to the k-core version
[14], we can expect that the size distribution of avalanches
triggered by randomly removed vertices obeys power law
pðsÞ / s�� with � ¼ 3=2.

Scale-free networks.—In ordinary percolation, and even
the k-core problem, networks with degree distributions that
are asymptotically power laws PðqÞ � q�� may exhibit
qualitatively different transitions, especially when � < 3.
To investigate such effects in the giant viable cluster, we
consider two uncorrelated scale-free networks, so
Pðqa; qbÞ ¼ PaðqaÞPbðqbÞ, having power-law degree dis-
tributions with fixed minimum degree q0 ¼ 1 (then hqi �
ð�� 1Þq0=ð�� 2Þ), so that PsðqsÞ ¼ �ð�sÞq��s , where s
takes the values a or b. As a control parameter we apply
random damage to the system as a whole so that vertices
survive with probability p. First consider the case that
�a < 3 or �b < 3 (or both).

The giant viable cluster is necessarily a subgraph of the
overlap between the giant components of each graph. We
know from ordinary percolation that for � > 3, the giant
component appears at a finite value of p [15]. It follows
that the giant viable cluster, also, cannot appear from
p ¼ 0; there must be a finite threshold pc, (with a hybrid
transition) This is true even if one of the networks has
�s < 3.

The more interesting case is when �a, �b < 3, when the
percolation threshold is zero for each network when con-
sidered separately. Let us write �a ¼ 2þ �a and �b ¼
2þ �b, and examine the behavior for small �a and �b. We
proceed by assuming that in this situation, for p near pc,
Eqs. (1) have a solution with small Xa, Xb � 1. Writing
only leading orders,

�aðXa; XbÞ ¼ p
�2

6�b

X�a
a ðXb � X1þ�b

b Þ (9)

and similarly for �bðXa; XbÞ. The location of the critical
point is found from Eq. (3) which becomes

�a þ �b ¼ p
�2

6
X�a
a X�b

b

�
Xa

Xb

þ Xb

Xa

�
: (10)

Substituting Eq. (9) into Eq. (1) and solving with Eq. (10)
we find Xs and S at pc. We find in general that the hybrid
transition persists for �a, �b � 0, though the height of the
discontinuity at the hybrid transition becomes extremely
small for � small. In experiments or simulations, this could
be misinterpreted as evidence of a continuous phase tran-
sition. We describe two representative cases. First, where
�a � �b, that is, �a ! 2 while �b > 2. We find that
pc � 1:19�b, and the size of the giant viable cluster at

pc is Sc ¼ Ae�B=�b with A � 3:36 and B � 2:89. We see
that a hybrid transition occurs, albeit with an extremely
small discontinuity, at a nonzero threshold pc as long as at
least one of �a and �b is not equal to zero. To examine the

case that both tend to zero, we consider the symmetric case
�a ¼ �b � �. Then Xa ¼ Xb � X, and the discontinuity is
found by requiring �0ðXÞ ¼ 1 [from Eq. (3)]. We find that

Xc ¼ ð1=2Þ1=�, pc ¼ 24�=�2, and, Sc ¼ 41�1=�. The criti-
cal point, pc, tends to 0 as � ! 0, and Sc becomes very
small even for nonzero �, but vanishes completely as
� ! 0; see Fig. 2. Expanding�ðXÞ about Xc we find again

square-root scaling, X=Xc � 1 ¼ Aðp=pc � 1Þ1=2 with
A¼12=�2�pc, which holds while p� pc � �3.
Summary.—We have given an algorithm for identifying

the viable clusters in any multiplex network. Under
increasing damage, the giant viable cluster collapses in a
discontinuous hybrid transition, in contrast to the smooth
continuous transition found in simplex networks. We have
shown that this transition is signaled by avalanches trig-
gered by removing vertices at random. The mean size of
the avalanches diverges as the collapse approaches. To
understand this critical behavior, which occurs only above
the transition, we successfully identified clusters of critical
vertices. These clusters determine the structure and statis-
tics of avalanches of damage. Avalanches sweep through
the critical clusters in a directed fashion, and it is the
diverging size of these clusters which accounts for the
criticality. This directed nature stands in contrast to, for
example, the corona clusters found in the k-core problem
[14]. Each critical cluster depends upon a keystone vertex
whose removal completely destroys the critical cluster.
These keystone vertices are good candidates for targeted
attack or immunization against such attacks.
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