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The dynamics in polymer monolayers where chains are strongly confined and adopt 2D conformations

are drastically different to those in the bulk. It is shown that viscoelastic hydrodynamic interactions play a

major role defining the anomalous chain diffusion properties in such systems where chains cannot cross

each other. We developed a quantitative analytical theory of polymer subdiffusion in 2D systems revealing

a complex behavior controlled by a delicate interplay of inertial, viscoelastic hydrodynamic interactions,

finite-box-size and frictional effects. The theory is fully supported by extensive momentum-conserving

and Langevin molecular-dynamics simulation data explaining the highly cooperative character of 2D

polymer motions.
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Introduction.—It is well-known that classical two-
dimensional (2D) fluids show anomalous dynamics (log-
diverging viscosity and diffusion coefficients) related to the
long-time tail of the velocity autocorrelation function (VAF)
of a tagged particle [1–5]. The dynamics of linear polymers
confined in 2D monolayers (2D polymer fluids) are even
more complex and are not yetwell understood, although they
have attracted a lot of interest [6–14]. Part of the difficulty is
related to nontrivial polymer conformational statistics and
dynamics: The chains in such systems stay highly compact
and segregated showing fractal (non-Gaussian) conforma-
tional properties even at high densities [6–8,15–18]. The
chains also show non-Rousean internal dynamics by highly
correlated amoebalike motions not involving activation
barriers [9,16,19,20].

In view of various nontrivial effects, the challenge to
account theoretically for 2D polymer melt dynamics seems
to be a formidable problem. We demonstrate here that it is
tractable by presenting a quantitative theory of anomalous
2D chain self-diffusion supported by extensive simulation
data of a flexible bead-spring model [21], both for
momentum-conserving and Langevin molecular dynamics.
In both cases we elucidate several regimes of anomalous
slow decay in the autocorrelation function of the center-of-
mass (c.m.) velocity of a tagged chain.

The most recent attempt to describe the chain diffusion
in strictly 2D melts [9] reported molecular dynamics simu-
lations with a standard (moderate) Langevin friction,
showing that the motion in 2D melts is highly correlated
leading to anomalous diffusion and relaxation of subchains
faster than expected for Rouse dynamics. These results
were rationalized by scaling arguments. The quantitative
approach developed in this Letter is valid for a much larger
parameter range and reveals that the scaling approach
actually did not consider the main physical mechanism
responsible for the anomalous chain diffusion. Ref. [9]
assumed that the Langevin friction destroys any hydro-
dynamic effects. However, we have discovered recently that

viscoelastic hydrodynamic interactions (VHI) are important
in 3D polymer melts, even with Langevin friction [22,23]. It
turns out that they are evenmore important in 2D. In addition,
finite box-size effects need to be included to correctly
describe simulations (3D or 2D [5,24]). Although the impor-
tance of hydrodynamic and finite size effects has already
been recognized for confined or adsorbedpolymer dynamics,
they were so far only discussed for single chain or dilute
systems [24–28].
Overview.—Each chain in a 2D melt occupies a compact

region of area A ’ N=c0 (N is the number of units per
chain, c0 is concentration of these units) and typical size

R ¼ ffiffiffiffi
A

p ¼ b
ffiffiffiffi
N

p
(b ¼ 1=

ffiffiffiffiffi
c0

p
is the monomer size). The

area is limited by a fractal boundary whose length L�
bðR=bÞ5=4 � bN5=8 is much longer than R (the fractal
dimension of the perimeter is 5=4) [15]. The most impor-
tant dynamical parameter of the system is the terminal
chain conformational relaxation time tm. The self-similar
chain structure and its amoebalike dynamics point to the
scaling law tm ’ �1N

� (�1 is the monomer time), and it
was argued that � ¼ 3 � 5=8 ¼ 15=8 [9,16]. The argument
is based on the estimate of the maximum energy dissipa-
tion at the perimeter line; hence, the value 15=8 should be
considered as an upper bound for �. It involves the as-
sumption that a segment located initially at the perimeter
line has to follow it during the time �tm, while in fact, the
segment can escape the perimeter towards the interior thus
reducing the energy dissipation.
An alternative estimate of � can be obtained using the

general relation [29] tm � R2=Dch ¼ R2�ch=ðkBTÞ, where
�ch is the total friction constant of the whole chain. A lower
bound on �ch is proportional to the number Next of contacts

of a chain with surrounding chains: Next �L=b / N5=8,

hence tm / R2Next / N13=8 (note thatNext / N in 3D melts
leads to the Rouse time [6,29] tm / N2); hence, the lower
bound for � is 13=8. Thus, we get 13=8<�< 15=8.
The exponent � also defines the shear relaxation modu-

lus EðtÞ which can be obtained based on the N dependence
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of tm. Applying the standard scaling argument [EðtÞ must
be proportional to the concentration c0=g of dynamical
blobs whose relaxation time tmðgÞ � �1g

� is �t] we get

EðtÞ ’ kBTc0ð�1=tÞ1=�; �1 � t � tmðNÞ: (1)

Our simulation data [21] support this EðtÞ scaling showing
a perfect power law with � ¼ 1:73� 0:01 (see Fig. 1).
Noteworthy, this � falls in the middle between the theo-
retical upper (15=8) and lower (13=8) bounds.

Below we focus on the dynamics of a chain c.m. char-
acterized by the mean-square displacement (c.m. MSD)

hðtÞ ¼ 1
4 h½rc:m:ðtÞ � rc:m:ð0Þ�2i and the c.m. VAF CðtÞ ¼

1
2 hvc:m:ð0Þ � vc:m:ðtÞi ¼ €hðtÞ, where rc:m: is the c.m. position

vector, vc:m: ¼ _rc:m:, and ‘‘dot’’ means time derivative. The

following response-function interpretation of _hðtÞ comes
from the fluctuation-dissipation theorem [22,30]: Consider
the system is at equilibrium at t ¼ 0 and a weak external
force F=N is applied to each unit of a tagged chain at t > 0.
Then it induces the mean c.m. velocity

hvc:m:i ¼ _hðtÞF=ðkBTÞ: (2)

The main physical mechanism for the dynamics is
described now. A localized constant force applied to a
simple 2D fluid generates a flow vðr; tÞ ¼ ßðr; tÞF, where
ß is the half trace of the Oseen tensor

ßðr; tÞ ’ 1

4��
ln
‘ðtÞ
r

; r & ‘ðtÞ: (3)

The upper cutoff ‘ðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi
�t=�

p
is the momentum diffusion

length (� is the fluid density, � is the viscosity) [4,31,32].
According to our key idea [22,23], Eq. (3) is also

applicable to polymer systems with slow stress relaxation
if � is replaced by the effective transient viscosity:

� ! �ðtÞ ¼
Z t

0
EðtÞdt: (4)

In the intermediate regime �1 < t < tm, we thus get

�ðtÞ � t1�1=�, ‘ðtÞ�vTt
1�0:5=�, ßðr; tÞ � t1=��1 ln½‘ðtÞ=r�

if b��1�1 (here vT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p
,m is the monomer mass,

and we set kBT ¼ 1). Taking into account that the force F
in Eq. (2) is actually delocalized within a region of size R,

we thus get _hðtÞ � ßðR; tÞ � t1=��1 ln½‘ðtÞ=R�,

hðtÞ � t1=� ln
‘ðtÞ
R

; 1 � t � tm; (5)

i.e., the c.m. MSD points to an anomalous subdiffusion.
The c.m.MSDpredicted inEq. (5) is totally different from

the result inRef. [9] using an ad hoc argument focused on the

tagged chain perimeter diffusion: the c.m. MSD hpdðtÞ �
N�1=2tð3=2�Þ, 1 � t � tm. It is clear that the perimeter dif-
fusion ([9]) is always negligible as compared with the col-
lective flow effect. Therefore, our main message: the c.m.
dynamics are dominated by the effect of the polymeric VHI.
Quantitative approach.—The above conclusion is fully

supported by the quantitative theory outlined below.
We focus on the c.m. VAF being more sensitive to reveal
the anomalous diffusion [22,23]. Based on Eq. (2) and the
generalized equations of slow incompressible 2D fluid
dynamics we find (cf. Refs. [22,23,33])

CðtÞ ’ kBT

N

Z
FðqÞ�ðq; tÞ d2q

ð2�Þ2 ; t � tm; (6)

where �ðq; tÞ ¼ d
dt ßðq; tÞ, ßðq; tÞ is the Fourier transform of

theOseen functionßðr; tÞ. TheLaplace transformof�ðq; tÞ is

�̂ðq; pÞ ¼ 1

2
½�pþ q2ÊðpÞ��1; (7)

where � ¼ mc0 and ÊðpÞ ¼ R
EðtÞe�ptdt ’

�ð1 � 1=�Þp1=��1 accounts for viscoelastic effects. The
form factor FðqÞ ¼ N�1

P
i;jhexp½iq � ðri � rjÞ�i, where i,

j are units of a tagged chain. For length scales exceeding the
monomer size, 1=q � 1, it shows a universal behavior
backed by our simulations: FðqÞ’Nfðq2R2Þ, with fðxÞ’1

for x � 1 and fðxÞ � x�11=8 for x � 1 [18]. Using Eq. (6),
we get

CðtÞ ’ v2
T=ð2NÞ; t � t0; (8)

CðtÞ’�C0t
�2þð1=�Þ

�
C1þ

�
2� 1

�

�
ln
t

t0

�
; tm� t� t0;

(9)

where C0 ¼ sinð�=�Þð1� 1=�Þ=ð8�2Þ � 0:0052, C1 �
0:259, m	 
 0:476b2=ðvT�1Þ2, and t0 ¼ ðNm	Þ�=ð2��1Þ�1
is the time of momentum diffusion over the whole coil
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FIG. 1 (color online). The reduced c.m. VAF vs t=t0. Thick
line—theoretical function �ðt=t0Þ for1 box size and � ¼ 0. The
symbols—simulation data for momentum-conserving dynamics,
various chain lengths and system sizes. Around the sign inversion
point � 1:45t0, the data are superposed with oscillations due to
sound modes [34]. Steps related to the finite box size are marked
with arrows: the data of different chain lengths superpose perfectly
for the same number of chains. Inset: Shear relaxation function
EðtÞ, symbols—simulation data, the line is adjusted according to
Eq. (1) to determine �1 ¼ 1:257 and � ¼ 1:73.
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defined by the condition ‘ðt0Þ ¼ R. The c.m. VAF, Eq. (9), is
in agreement with the c.m. MSD, Eq. (5).

More generally, we find CðtÞ ’ ðv2
T=NÞ�ðt=t0Þ, where

the calculated universal function �ðt=t0Þ is shown in
Fig. 1 together with our momentum-conserving simulation
data for various chain lengths and system sizes. The pre-
dicted CðtÞ is negative for t > tinv � 1:45t0. A good quan-
titative agreement can be observed at t=t0 & 10; however,
it deteriorates at longer t as marked by a step feature (a
shoulder) shown by arrows. This discrepancy is associated
with the finite box size: the simulations are done in a square
box L� L, L ¼ R

ffiffiffiffiffiffiffi
nch

p
, with periodic boundary condi-

tions. A discrete set of wave vectors is selected in this
case: q ¼ ðq1; q2Þ ¼ 2�

L ðn1; n2Þ with integer n1, n2. The

c.m. VAF is then defined by Eq. (6), where
R d2q

ð2�Þ2 is

replaced by 1
L2

P
q�0 involving summation over the discrete

set of q (the condition q � 0 accounts for identically zero

total momentum). Using thus modified Eq. (6) we arrive at

CðtÞ ’ ðv2
T=NÞ½�ðt=t0Þ þ ð1=nchÞ�boxðt=tLÞ�; (10)

where tL ¼ t0½nch=ð2�Þ2��=ð2��1Þ is the time of momen-
tum diffusion over the whole box (‘ðtLÞ � L) and the new
universal function �boxðt=tLÞ represents the finite box-size
effect. The prediction, Eq. (10), is in agreement with the
simulation data in the whole time window of good statistics
(see Fig. 2). Note, in particular, how well the steplike

feature at t� 10tL is represented by the theory (this step
is also visible in the monomer VAF, not shown).
To resume, we briefly discuss finite compressibility

effects. These are twofold. (i) A prolonged ballistic regime,
CðtÞ ’ Cð0Þ ¼ 1

mN for t � tb, where the ballistic time tb
increases with N, tb ¼ R=cs /

ffiffiffiffi
N

p
, where cs is the sound

velocity. Recall that the chains in 2D are segregated in
regions of size R. The initial momentum P0 of a tagged
chain propagates on the distance ls ¼ cst; hence the lion’s
share of P0 remains with the chain for t � tb. Equation (8)
is applicable at longer times, for tb � t � t0 (momentum-
diffusion regime). The transition between the two short-
time regimes is visible as an undulation at t� tb
(see Figs. 1–3; note that t0=tb / N0:2). (ii) Reflected
sound waves: In a finite box ðL) they give rise to
oscillations of CðtÞ with the main period tsL ¼ L=cs and

the longest viscous damping time tdamp � L2�=�ðtsLÞ �
�1ðcs=vTÞ2½L=ðcs�1Þ�1þ1=� [34].
Langevin dynamics.—We also considered 2D polymer

dynamics modified with Langevin friction force fL ¼
��mv (v is monomer velocity) applied to each monomer
(and the corresponding random noise). Such Langevin
dynamics are widely employed in computer simulations.
In the confined 2D case the Langevin forces are also
directly relevant accounting for the friction between poly-
mer and the supporting surface. Equation (6) is still appli-
cable here, with one change: �p in the response function,
Eq. (7), must be replaced with �ðpþ �Þ [22,23,33]. The
range of the VHI is now defined by the Langevin screening

length [35] ~r� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=��

p
. It is important that ~r increases

with time in polymer fluids following the effective viscos-

ity �ðtÞ [36]: ~rðtÞ � ðb= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m	�1�

p Þðt=�1Þð��1Þ=ð2�Þ for t < tm.
The c.m. VAF can be expressed in terms of the generalized
reduced function depending on � ¼ t=t0 and g ¼ �t0:
CðtÞ ¼ ðv2

T=NÞ�Lðt=t0; �t0Þ. For g � 1 it shows the
following asymptotic behavior: �Lð�; gÞ ’ 0:5e�g�,

� & 1=g; �L ’ �0:16g�11=8�z�1, 1=� � t � t�; �L ’
�0:0109��2þ1=�½1:006þ ð1� 1=�Þ ln�� lng�, t��t�
tm. Here, z ¼ ð3=8Þð�� 1Þ=�, and t� ¼ t0ð�t0Þ�=ð��1Þ ¼
�1ðm	�1�NÞ�=ð��1Þ is the Langevin characteristic time
defined by the condition ~rðtÞ�R; note that 1=�& t��
tm in the regime 1=t0 & � � �	 we consider [36].
The box-size effects are rather weak for Langevin systems

(forg * 1) and can be neglected in the regime t & tm, except

for short chains N & N	 ¼ ðm	�1�nch=4�2Þ�1=ð2��Þ.
Typically N	 & 10, so the latter regime is not important.
Thus, the c.m. dynamics are defined by fading inertial effects
for short time t & 1=� [positive decreasing CðtÞ], while the
VHI effects control the dynamics at longer times, t � 1=�.
CðtÞ is negative at t > tinv, where tinv is now �1=�;
more precisely, it is defined asymptotically by �t ’
ln½3:1�t�ðt=t�Þ0:842�. The c.m. VAF behaves as CðtÞ /
�t�0:84 in the first VHI regime, tinv & t & t�, and CðtÞ /
�t�1:42 in the second VHI regime, t� & t & tm.
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FIG. 2 (color online). c.m. VAF for N ¼ 1024 (bottom), N ¼
256 (middle) and c.m. MSD (top); all data are multiplied by
chain length. Simulation data is represented by symbols, theory
by lines. The MSD for a given chain length split at long times
according to the different box size. The theory includes the finite
box size term according to Eq. (10) which perfectly describes the
step feature of the simulation data [34].
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The predictions of the theory [based on the modified
Eq. (6)] are compared with the simulation data in Fig. 3
showing a very good agreement (no fitting parameter). The
main effects of the friction � are a significantly shorter sign-
inversion time tinv, a significantly lower reduced c.m. VAF
NjCðtÞj for t * tinv (it decreases with both � and N), and a
slower decrease of jCðtÞj in the intermediate time regime
tinv & t & t�. The effect of � on the c.m. dynamics dimin-

ishes at longer t (in the second VHI regime). The t�0:84

scaling is not visible unless N is very long. In practice both
VHI regimes merge giving a broad regime ðtinv & t & tm)
where the slope s of lnjCðtÞj vs lnt is roughly in the range
�1:2 to �1:4; jsj increases with time but decreases with
friction� tending to jsj & 1:1–1:2 for� * 0:5 (cf. Ref. [9]).

Discussion.—The confined polymer dynamics (the
model with Langevin friction in particular) are fundamen-
tal and are highly relevant experimentally for polymers
adsorbed on solid [10–12,14] or liquid surfaces [7,8]
(Langmuir polymer films), or trapped on surfactant mem-
branes (supported phospholipid bilayers) [6,11,13]. The
dynamics are relevant to important technological and bio-
mimetic applications [11,37]. Understanding of the 2D
polymer diffusion can also shed light on the dynamics of
protein motions in cell membranes [27,38]. Curiously, the

predicted anomalous subdiffusive MSD hðtÞ / t1=� � t0:58

is rather close to the subdiffusion anomaly of transmem-
brane proteins (t0:65�0:05) [27], although the membrane
system cannot be regarded as closely a 2D melt. The chain
conformational relaxation time, tm / N� with � � 1:73
coming from our model (without chain crossings) is in
harmony with recent results for polymers confined at air-
water interface [8] [see Fig. 3b there]. Noteworthy, for � >
�	ðNÞ we predict Rouse-like tm / N2, D / 1=N which is
consistent with recent measurements on polymer surface
diffusion [10,39]. However, in some cases the hydrody-
namic coupling to the third dimension may need to be
considered as well [25,26] which deserves further
investigation.

Conclusion.—We elucidated the physical origin of the
highly correlated chain dynamics in 2D melts: We demon-
strated, both analytically and numerically, that the VHI
effects are extremely important. Our quantitative analytical
theory of anomalous subdiffusion in polymer monolayers
predicts a complex behavior of the c.m. VAF controlled by
a delicate interplay of inertial, viscoelastic, finite-box-size,
and frictional effects. The theoretical c.m. VAF and MSD
are in remarkably good quantitative agreement with our
simulation data without fitting parameters. By contrast, the
fractal chain perimeter friction effects [9] are shown to be
subdominant; hence, the theory of Ref. [9] has probably no
region of applicability. The obtained c.m. VAF in the
intermediate regime (t shorter than the polymer relaxation
time tm) is different in both the sign and decay law from the

classical t�d=2 ¼ t�1 power decay found in simple 2D
fluids. Eq. (9) is even not a pure power law. We also
discovered the basic scaling laws for the chain relaxation

time, tmðNÞ / N�, and the relaxation modulus, EðtÞ /
t�1=�, with � ¼ 1:73� 0:01 pointing to a new dynamical
exponent for 2D melts. In addition, the time growth of the
Langevin screening length ~rðtÞ explains why both the
dominance of the VHI effects and the highly cooperative
polymer motions are preserved even with the Langevin
friction.
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