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Studies of stochastic biological dynamics typically compare observed fluctuations to theoretically

predicted variances, sometimes after separating the intrinsic randomness of the system from the enslaving

influence of changing environments. But variances have been shown to discriminate surprisingly poorly

between alternative mechanisms, while for other system properties no approaches exist that rigorously

disentangle environmental influences from intrinsic effects. Here, we apply the theory of generalized

random walks in random environments to derive exact rules for decomposing time series and higher

statistics, rather than just variances. We show for which properties and for which classes of systems

intrinsic fluctuations can be analyzed without accounting for extrinsic stochasticity and vice versa. We

derive two independent experimental methods to measure the separate noise contributions and show how

to use the additional information in temporal correlations to detect multiplicative effects in dynamical

systems.
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Many complex systems in nature are both intrinsically
probabilistic and randomized by varying extrinsic inputs.
Because the properties of such variability are often poorly
understood, unknown extrinsic noise greatly complicates
analyses of intrinsic mechanisms and vice versa [1].

One approach to this problem is to separate the two
types of effects by monitoring independent twin reporter
systems embedded in the same environment. Correlated
noise is then interpreted as extrinsic and uncorrelated noise
as intrinsic. This approach has been used to separate nature
from nurture in human development [2], diffusion from
material inhomogeneities in microrheology [3], and the
effects of individual chemical events from variation in
the intracellular state of living cells [4–10].

However, such approaches only separate intrinsic and
extrinsic variances, and though variances can be useful to
illustrate principles, they are often insufficient to infer
mechanisms from data. For example, the predictions of
many simple models of stochastic gene expression were
initially borne out experimentally [11–15], while subse-
quent studies showed that other models with other non-
linear effects, burst sizes, or waiting time distributions
fit experiments equally well [16–19]. Full distributions
are less used to explain basic principles, but if reliably
measured they greatly facilitate experimental tests. Since
different processes create the same overall occupancies
[18,20,21], time correlations can also help pinpoint mecha-
nisms from data. Restricting the separation of intrinsic

and extrinsic effects to variances thus creates an unfortu-
nate choice between either neglecting the information
in temporal correlations and higher moments or simulta-
neously analyzing the combined complexity of system and
environment.
Operational definitions based on experimental proce-

dures can also become divorced from the phenomena
they were meant to capture. Intrinsic and extrinsic noise
must therefore first be physically defined, while experi-
mental strategies must be designed to provably measure
the same quantities. To take a step further and identify
mechanisms from data, for example, comparing measured
intrinsic noise to models of the intrinsic system, the general
mapping between phenomenological and mechanistic
properties must also be established.
Here, we identify intrinsic and extrinsic contributions to

time correlations and higher moments, show how they can
be determined from either of two types of experimental
approaches, and establish how they relate to mechanistic
properties. We also demonstrate how to experimentally
test if a system falls in a class for which mechanistic and
phenomenological properties agree and describe an alter-
native approach for when they do not. Because biological
systems operate far from thermodynamic equilibrium, we
cannot use classical statistical mechanics approaches, such
as connecting potentials to distributions, and, because the
purpose of the approach is to analyze interaction networks
where we do not know many details, we cannot evaluate
linearizations or continuity approximations. We therefore
consider generalized multileveled random walks with
state-dependent transitions and derive exact results for
families of processes.
Generalizing previous phenomenological definitions of

intrinsic and extrinsic noise [9], we consider an arbitrary
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stochastic system—allowing for feedback loops and other
interactions between components—that is subject to an
arbitrary vector of changing environmental inputs ZðtÞ,
where by definition the environment is negligibly affected
by the system. We then consider an observed variable
of the system, Xt, and decompose that observable into a
time-varying ensemble average �xðtÞ ¼ hXtjZ½0; t�ie condi-
tioned on the environmental history Z½0; t� and the
deviation �xt ¼ XtjZ½0;t� � �xðtÞ from that conditional

average (Fig. 1)

Xt ¼ �xt þ �xðtÞ: (1)

In the limit of a constant environment, �xt purely reflects
the inherent randomness of the system, while, in the
extreme where the deviations �xt are always zero, �xðtÞ
purely reflects the influence of the varying environment.
For all intermediate cases, the effects combine, with the
state of the environmental variable affecting both the
system’s average response as well as its fluctuations.
The multipoint temporal correlation AXð�1; . . . ; �‘Þ �
hðXt � hXiÞðXtþ�1 � hXiÞ � � � ðXtþ�‘ � hXiÞi of the physi-

cal observable Xt then decomposes into

AXð�1; . . . ; �‘Þ ¼ A�xð�1; . . . ; �‘Þ þ A �xð�1; . . . ; �‘Þ
þX

�

�Y
i2�1

½ �xðtþ �iÞ � hXi�Y
i2�2

�xtþ�i

�
;

(2)

where angular brackets denote a time average, � denotes
the set of all possible partitions of f0; 1; . . . ; ‘g into two
nonempty sets �1, �2, and �0 ¼ 0 for notational conve-
nience. The first two terms correspond to intrinsic and
extrinsic components, respectively, and the remaining
cross terms can be nonzero even for the simplest systems
and environments. This illustrates the danger of first iden-
tifying an extrinsic contribution and treating the remainder
as intrinsic, even if all interpretations are purely pheno-
menological. However, in the following, we show how all
terms in Eq. (2) can be inferred from experimental data,

under the only condition that the system eventually
samples all states over the time scales considered.
For ‘ ¼ 1, the above decomposition simplifies because

all cross terms vanish as h�xtjZ½0; t�ie ¼ 0 at any point for
any environmental history [22]. The autocorrelation of Xt

thus exactly decomposes (Fig. 2) into the autocorrelation
of �xðtÞ and the autocorrelation of �xt, generalizing the
previous variance result [9] to temporal correlations

AXð�Þ ¼ A�xð�Þ þ A �xð�Þ: (3)

These contributions are experimentally accessible by
following two identical but independent reporter systems
R1 and R2 embedded in the same fluctuating environ-
ment [4,23]. By construction, the reporter systems are
then conditionally independent h�R1;t�R2;tjZ½0; t�ie ¼
h�R1;tjZ½0; t�ieh�R2;tjZ½0; t�ie and their temporal cross

correlation identifies the extrinsic contribution to the auto-
correlation [22]

A �xð�Þ ¼ hR1;tR2;tþ�i � hR1;tihR2;ti: (4)

Subtracting A �xð�Þ from the single reporter autocorrelation
subsequently identifies the intrinsic component A�xð�Þ via
Eq. (3). The cross correlation of dual reporters has been
experimentally reported and used to operationally define
intrinsic and extrinsic contributions to autocorrelations
[23]. Equations (3) and (4) establish that such experimental
correlations directly measure the properties of �xðtÞ and
�xt, allowing for rigorous mechanistic interpretations
of experimental results rather than just phenotypic classi-
fications (see below).
For higher statistics (‘ � 2), the fact that �xðtÞ and

�xt are not independent becomes explicit in the decom-
position. The nth central moment �n½X� � hðX� hXiÞni
[corresponding to �1 ¼ 0; . . . ; �n�1 ¼ 0 in Eq. (2)] is
given by

FIG. 1 (color online). Analyzing an arbitrary stochastic pro-
cess subject to fluctuating environments. Given an environmental
trace zðtÞ (dashed gray line), a system exhibits a random trace
Xt (two realizations, black lines). We define the time-varying
ensemble average �xðtÞ (thick blue line), given the environmental
history, and the instantaneous deviation �xt of the system from
that average (red bar).

FIG. 2 (color online). Decomposing autocorrelations and dis-
tributions. The observed autocorrelation of Xt (dashed line) is the
sum of the autocorrelation exhibited by the ensemble average
and the autocorrelation of the instantaneous deviations [Eq. (3)].
The probability distribution of Xt (dashed line) is not a simple
convolution of Pð�xÞ and Pð �xÞ [because �xt and �xðtÞ are not
independent], but its moments are related to those of �xt and
�xðtÞ, as specified by Eq. (5).
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�n½X� ¼ �n½�x� þ�n½ �x�

þ Xn�1

k¼2

n

k

� �
hð �xðtÞ � hXiÞn�k�xkt i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

In;k

: (5)

Because distributions are uniquely determined by their
moments, this identifies the full intrinsic and extrinsic dis-
tributions. All cross terms and moments can be identified
experimentally by generalizing the twin reporter approach
to n identical and independent copies R1; R2; . . . ; Rn of the
system of interest embedded in the same fluctuating envi-
ronment. Such a setup could, for example, be realized by
expressing multiple fluorescent reporter proteins of differ-
ent color in the same cell [24].

We find that the multiple reporter cross correlations
satisfy

hðR1 � hRiÞjðR2 � hRiÞ � � � ðRn�ðj�1Þ � hRiÞi

¼ Xj
k¼0

j

k

� �
hð �xðtÞ � hXiÞn�k�xkt i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

In;k

: (6)

For j ¼ 1; 2; . . . ; n� 1, these relations define a linear
equation system that can be solved for all cross terms in
Eq. (5) as well as �n½ �x� ¼ In;0, which means that �n½�x�
can be inferred from the equation. The cross correlations
between n independent and identical reporters can thus
exactly identify the intrinsic and extrinsic contributions
to the observed nth central moment of the distribution
of Xt.

Relating intrinsic and extrinsic contributions to sepa-
rately defined �x and �x allows us to design alternative
experimental strategies to measure the same quantities
(Fig. 3): assuming independence between reporters, the
sum of many independent copies of the same type of
reporter provides a direct estimate for the time series of
the conditional average �x, while any intrinsic statistical
property can be observed with just one additional distinct
reporter, whose deviations from �x give �x.

This approach estimates exactly the same type of intrin-
sic and extrinsic contributions as the correlation-based
method and captures the full intrinsic and extrinsic distri-
butions. In fact, for variances and autocorrelations, only a
single type of reporter is needed, first measuring fluct-
uations of the full process and then separately measuring
fluctuations in the average of many reporters. This
approach is limited by sample error when estimating the
average response from a finite number of reporters but has
the advantage that distinguishable reporters are not needed.
Ideally, both approaches would be used for a side-by-side
comparison, providing independent validation by meas-
uring the same property in two different ways, but one
method may be more convenient than the other in any
given application.
The main practical reason for identifying intrinsic and

extrinsic noise contributions is to analyze each category
separately using simpler models that only account for that
type of randomness, i.e., comparing measured intrinsic
noise to models that ignore environmental fluctuations
and comparing measured extrinsic noise to models of a
system responding deterministically to environmental
changes [5–7]. However, whether or not this is a rigorous
approach depends on the noise category, the statistical
measure considered, how reaction rates depend on abun-
dances, and how the environment is coupled to the compo-
nents of the system [9,25]. For systems where the intrinsic
variables interact nonlinearly with each other, it is known
[9] that neither the intrinsic nor the extrinsic noise above
can be rigorously analyzed from models that ignore extrin-
sic or intrinsic stochasticity, respectively: noise brings the
system into states with disproportionate changes in dynam-
ics. However, Eqs. (2)–(6) are exact even for such systems,
and many experimental approaches were designed so that
nonlinear interactions are in the shared extrinsic environ-
ment [4,5], instead using the approach to disentangle other
nontrivial effects such as bursting, time averaging, molecu-
lar memory, etc., in the random walks. Here, we determine
to what extent intrinsic or extrinsic noise in such systems
can be rigorously and exactly analyzed by models that only
account for intrinsic [5–7] or extrinsic noise.
Previously, we have shown that, if all reaction rates

rkðx; zðtÞÞ are linear functions of the vector of intrinsic
variables x ¼ fx1; x2; . . .g, where the system undergoes
reactions x!rk xþ sk for k ¼ 1; 2; . . . , which is true for
many models of stochastic gene expression, the dynamics
of the ensemble average �xðtÞ follows exactly from a classic
rate equation approach, employing ordinary differential
equations subject to time-varying rate constants set by
the extrinsic processes [9]

d �x

dt
¼ �ðzÞ þ JðzÞx|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Rðx;zÞ

; (7)

where the fluctuating vector of fluxes is given byRðx; zÞ ¼P
krkð �xðtÞ; zðtÞÞsk. By showing how to determine any time

FIG. 3 (color online). Experimentally inferring intrinsic and
extrinsic contributions. The correlations between multiple
independent but distinguishable reporters identify temporal
autocorrelations and higher order statistics of �x and �x [see
Eqs. (4) and (6)]. Alternatively, a set of indistinguishable
reporters can be used to directly estimate �x and thus �x.
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correlations and higher statistics of �x, Eqs. (4) and (6)
thus show how the simple rate equation type of models
that ignore intrinsic noise can be rigorously compared
against much richer aspects of the extrinsic data than just
variances [9].

Whether intrinsic contributions can be analyzed without
explicitly representing environmental fluctuations in turn
depends on whether the environmental influences are
additive (constant Jacobian matrix J) or multiplicative
(fluctuating Jacobian J) [9]. We previously showed that
for additive environments the intrinsic variance is exactly
captured by models that account for intrinsic stochasticity
but ignore environmental fluctuations, if the system is
linear with respect to intrinsic variables [9]. In other words,
for such systems, the covariance matrix C of intrinsic
species xi satisfies C ¼ Cint þ Cext, where Cint is the co-

variance matrix of the simplified systemx!r̂kðxÞ xþ sk for
k ¼ 1; 2; . . . , in which environmental fluctuations have
been replaced by their averages r̂kðxÞ � rkðx; hziÞ, and
Cext is the covariance matrix of a system of deterministic
ordinary differential rate equations with fluctuating rates
[Eq. (7)]. Under the same conditions, we can show that
the matrix of correlations between the intrinsic species at
times t and tþ �, conditioned on the same environmental
history, satisfies @

@�Aðt; tþ �Þ ¼ �JA, withAðt; tÞ ¼ CðtÞ,
where CðtÞ is the instantaneous conditional covariance
matrix with elements CijðtÞ ¼ h�xi�xjie between intrinsic
species [26]. Because we can write the intrinsic contri-
bution to the autocorrelation ðA�xÞi;j ¼ h�xi;t�xj;tþ�i as a
time average of the instantaneous autocorrelations, i.e.,
A�xð�Þ ¼ hAðt; tþ �Þi, we thus obtain

A�xð�Þ ¼ expð�J�ÞCint; (8)

where we have made use of Cint ¼ hCðtÞi from Ref. [9].
For intrinsically linear systems subject to additive extrinsic
noise, the inferred autocorrelations of any intrinsic species
�xi can thus be rigorously analyzed using simplified mod-
els that ignore extrinsic influences. This makes the tempo-
ral correlations between dual reporters [4] a powerful
experimental measure, as illustrated below.

The same is true for a system’s intrinsic skewness: the
time evolution of the skewness tensor of an arbitrary multi-
variate system that is linear and additive in the above sense
can be described by a general tensor equation involving
only the Jacobian and covariance matrices [22]. By taking
time averages of the tensor equation with fluctuating rates,
it can be shown that the skewness �̂3;i of species xi
predicted by mechanistic models in which fluctuating rates
are replaced by their averages r̂kðxÞ is in fact equal to the
intrinsic contribution to the skewness

�3½�xi� ¼ �̂3;i: (9)

Surprisingly, the kurtosis and higher order moments
cannot be interpreted as the higher order moments of

systems where environmental effects are replaced by
their averages—even for intrinsically linear systems
subject to additive environmental influences (proof by
counterexample in Ref. [22]). This illustrates the dangers
of using interpretations that are merely intuitive and not
proven.
When environmental effects are multiplicative, the ex-

perimentally identified intrinsic noise cannot be rigorously
compared to models that ignore extrinsic fluctuations; see
Fig. 4(a) and [9]. For many processes, in living cells, the
environment will multiplicatively affect system variables,
but not for all. The problem is that the twin reporter assay
has so far always been used in situations where we do not
know if the environment is additive or multiplicative [4–7]
and thus cannot necessarily trust the conclusions from the
associated mechanistic models.
Specifically, if only variances are experimentally

decomposed, we must assume additive environments to
analyze intrinsic mechanisms, with no way of testing if
the assumption holds or not [9]. However, intrinsic and
extrinsic contributions to skewnesses or autocorrelations
[Eqs. (3)–(6)] place constraints on models without incre-
asing their degree of freedom. This can be used to test
if a given type of model is consistent with additive
environments.
For example, consider the commonly used toy model of

gene expression in which individual mRNA molecules
(levels denoted by x1) are produced with rate �1, degraded
with rate �1x1, and individual proteins (levels denoted by
x2) are produced with rate �2x1, degraded with rate �2x2.
We typically do not know a priori which rate constants
are significantly affected by environmental fluctuations.
However, for systems with additive environments, i.e.,
where only rate constant �1 fluctuates significantly, then,
regardless of how �1 fluctuates, the experimentally
extracted intrinsic component of the total protein autocor-
relations exactly follows

(a) (b)

FIG. 4 (color online). Signature of multiplicative noise.
Simulation results of the gene expression model in the main
text. (a) For systems subject to multiplicative noise, the intrinsic
contribution to the autocorrelation differs from the autocor-
relation Âð�Þ that the system would exhibit in the absence of
environmental fluctuations. (b) Systems with multiplicative
noise (black squares, solid line) deviate significantly from
Eq. (11) (dashed gray line). Inset: Despite strongly multiplicative
noise, the best fit (red line) of simple exponentials (black dots)
can be near perfect. (See the parameter values in Ref. [22].)
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1

hx2ie
��2�þ 1

hx1i
�2

�2þ�1

½Fe��1�þð1�FÞe��2��; (10)

where F ¼ �2=ð�2 � �1Þ. Without knowing all the indi-
vidual parameters, we can then fit a sum of two exponen-
tials ae�ka� þ be�kb� to the experimentally determined
intrinsic autocorrelation. Surprisingly, we find that even
in the presence of multiplicative noise such fits can be near
perfect [see the inset of Fig. 4(b)]. However, if the environ-
ment is additive, the fit parameters will satisfy

kb
ka

¼ �a� 1=hx2i
b

; (11)

while for multiplicative environmental noise this relation is
violated; see Fig. 4(b).

For multiplicative environments, we can thus rigorously
model the system’s response to extrinsic noise without
accounting for intrinsic contributions, but not vice versa.
However, because Eqs. (2)–(7) remain valid, we can first
thoroughly evaluate extrinsic models and then use them to
embed models of intrinsic stochasticity. The approaches
above could also be combined with recent theoretical
developments to use reporters at multiple levels of a system
[10], which can divide intrinsic and extrinsic noise into
more subcategories and help pinpoint exact mechanisms.
As cell biology moves away from bulk averages to study
natural perturbations and responses, we believe these types
of approaches—that analytically exploit broader properties
of classes of systems rather than simulating whole net-
works—will be crucial to quantify the mechanisms of
living cells.
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