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3Departamento de Fı́sica, Universidade Federal do Ceará, Fortaleza, Ceará 60451-970, Brazil
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How does pore liquid reconfigure within shear bands in wet granular media? Conventional wisdom

predicts that liquid is drawn into dilating granular media. We, however, find a depletion of liquid in shear

bands despite increased porosity due to dilatancy. This apparent paradox is resolved by a microscale

model for liquid transport at low liquid contents induced by rupture and reconfiguration of individual

liquid bridges. Measured liquid content profiles show macroscopic depletion bands similar to results of

numerical simulations. We derive a modified diffusion description for rupture-induced liquid migration.
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Is interstitial pore liquid driven away or drawn into shear
bands during deformation of granular matter? In fully
saturated granularmaterials it is known that liquid is sucked
into dilating shear bands with increase in porosity [1–4]
since air is precluded from entering the dilated shear band
pore volume. In unsaturated granular media, however, at
low liquid contents with continuous air phase it is unclear
if the liquid content increases or decreases. In this work
we show that in the pendular regime where only capillary
bridges are present, a liquid migration pattern opposite
to that observed for saturated media develops. Despite
increase in porosity in the shear band, liquid content con-
sistently decreases. Liquid migration is of tremendous
importance to the stability properties of soil structures
[5,6]. Partially saturated soils may be considered as brittle
due to the collapse of menisci in the failure plane [7].
Furthermore, granular materials generally lose strength
with decreasing liquid content [8]. On the other hand, liquid
accumulation in soil pores may cause a dramatic decrease
in strength leading, e.g., to landslides or soil collapses [5,9].
Moreover, liquid migration is also of great interest in a
variety of other situations in powder technology or phar-
maceutical applications where grains are mixedwith liquid,
e.g., in spray coating of tablets [10]. It was reported that
in partially saturated soils, liquid migrates away from the
shear plane due to the formation of microcracks and increa-
sing connectivity near the failure plane [11]. On the grain
level, however, first experimental investigations on par-
tially saturated soils using nondestructive techniques have
been performed only recently [12] and the authors did not
measure the liquid content. In this Letter, we experimen-
tally measure fluid depletion patterns in shear bands using a
split bottom shear cell [13] and propose a novel model with
capillary bridges capable of reproducing the experimental
results. We show how the inclusion of flow dynamics
between individual liquid structures leads to the observed
fluid depletion and explain our findings within a diffusive
description of the flow dynamics.

Experiment.—To investigate liquid transport in regions
of strain localization, it is desirable to realize a stable shear
band at a fixed position. The circular split bottom cell [13]
used in our experiments satisfies this requirement. Our
split bottom cell, sketched in Fig. 1, consists of two circular
L shapes where the inner part is made of a rotating cylinder
at constant velocity (radius 10 cm) and the outer part is
fixed. The distance from the symmetry axis of the cell to the
outer wall is 18 and 15 cm to the slit where theL shapes join.
We define a coordinate z along the axis of the inner
cylinder. Glass beads (from Sigmund Lindner, SiLi beads
type S) with radii R ¼ 0:85� 0:075 mm were used. In
order to measure the liquid distribution in the bulk of the
sample, we used a UV glue (from Norland products, NOA
61) that hardens after irradiation with ultraviolet light.
In the liquid state it has a surface tension � of 40 mN=m,
which is close to that of water, a viscosity � of 300 mPa s,
and from electron microscopy the contact angle on glass
was estimated to be less than 10�. The glue and beads
were thoroughly stirred in a glass container until the glue
appeared homogeneously distributed. The shear cell was
then filled up to 1.5 cm. Too large filling heights delay the
hardening of the glue. Initially, not all bridges have the
same volume, but the spatially averaged liquid distribution
is homogenous. After shearing, the glue is immediately
hardened, such that subsequent measurements of the
liquid content are possible with virtually no time delay.

FIG. 1. The circular split bottom shear cell consists of a
rotating inner part (shaded in gray) as well as a fixed outer
part (white) separated by a thin slit. The gray cylinder and ring
rotate at the same angular velocity.
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For visualization we mixed the UV glue with a fluorescent
dye, and in order to cut the sample into slices after hard-
ening, we filled all remaining pore space with a clear and
colorless epoxy resin and checked that the liquid bridges
remain in their original state. The rotation speed was fixed
to ! ¼ 2�=600 s�1, the overall shear displacement was
8 turns, and the liquid content was 1%, which is the liquid
volume divided by the volume of the sample. Figure 2(a)
shows a slice along a plane perpendicular to the shear
band. Indeed, liquid is driven out of the shear band and is
accumulated along the edges. The thin blue curve in Fig. 3
shows the liquid content obtained experimentally as a
function of the distance d from the outer fixed wall aver-
aged over bridges having a height larger than z ¼ 3:4 mm.

Because of strong noise, we were limited to averaging only
over the largest possible z range. Additionally, the data
were smoothed using a running average filter of window
size 0.28 mm. To determine the liquid content, we counted
the amount of pixels belonging to a liquid bridge in the
images taken by an optical microscope and averaged over
8 slices. We also found that the Fourier spectrum of the
unsmoothed data is exponentially decaying for large
enough frequencies not revealing any further hidden char-
acteristic length scales.
Numerical model.—To understand the redistribution of

liquid in sheared granular flows, we develop a model with
capillary bridges including liquid flow dynamics. We use
contact dynamics [14,15] with cohesive forces due to
capillary bridges and Coulombian friction to model rigid
spherical particles with radii uniformly distributed bet-
ween 0.775 and 0.925 mm. Simple models for cohesive
forces are well established in contact dynamics [16–18].
We use empirical formulas for the capillary force which
have been suggested by Willett et al. [19].
The grains are characterized by a certain roughness in

which liquid may accumulate and form a wetting layer. As
soon as liquid layers coating the particles are brought into
contact, a capillary bridge having a small volume is formed
[20,21]. Experimental observations reveal that small
bridges grow in favor of larger ones due to liquid fluxes
driven by Laplace pressure differences either through the
vapor phase, which is presently not the case, or through
thin wetting layers on the beads [8], which we call minimal
wetting layers. The associated flow resistance for thin films
is essentially independent of the film thickness [22], such
that the dynamics can be modeled by taking the flux
between two bridges as proportional to the pressure differ-
ence. Since the volume of the minimal wetting layers on
the beads is small compared to the volume of the bridges,
we do not consider the volume of the minimal films explic-
itly. Instead, whenever two beads come into contact, we
initialize the liquid bridge with a small volume which is
sucked out of the neighboring bridges. Once a liquid bridge
has formed, it becomes part of the contact network in
which the bridge volumes Vi are constantly updated
according to _Vi ¼ �

P
jðPj � PiÞ, where Pi is the pressure

in contact i and the sum runs over all neighbors j of contact
i, and � / ��1 is the inverse flow resistance of the film
which is a model parameter. When the separation between

two grains exceeds the distance V1=3
i , the liquid bridge

ruptures [19] and the liquid is sucked back onto the grains
fast [20]. In that case, we equally distribute the liquid
among the two particles. Since the film swells (the volume
of the film becomes Vf) and the flow resistance drops, we

assume that the liquid is instantaneously sucked into all
neighboring bridges regardless of the choice of �. Each
bridge receives an amount of liquid�Vi ¼ AðPf � PiÞ=Li,

where Pf ¼ �=R is the pressure in the film, Li is the

distance from the rupture point to the bridge i, and A is a

FIG. 2 (color online). (a) A slice perpendicular to the shear
band after a shear displacement of 8 turns. Liquid [artificially
highlighted in light gray (green)] has migrated away from the
shear band and is accumulated along the edges of the shear zone.
The beads were artificially marked dark gray (purple). (b) A slice
perpendicular to the shear band as obtained in simulations. We
only show the capillary bridges represented by lines of width and
brightness proportional to their volume. The width of both
images is 60 mm. The coordinate d points from the outer wall
towards the symmetry axis.

10 20 30 40 50

0.005

0.01

0.015

0.02

FIG. 3 (color online). The liquid content from simulation
(� ¼ 0) and experiment agree well. A depletion in humidity
is found inside the shear band after 8 turns. The dashed line
(� ¼ 1) is equivalent to a suction controlled model.
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normalization factor such that
P

i�Vi ¼ Vf. The flow

dynamics in our model is asymmetric: The time scale for
liquid redistribution after bridge rupture is infinitely short
while the time scale for equilibration of liquid bridges is
controlled by �. For � ! 1, our model is equivalent to a
suction controlled model where the Laplace pressures of
all liquid bridges are equal. Traditionally, slow deforma-
tions, e.g., in geotechnics, are usually studied by means of
suction controlled models [23]; however, our model is also
applicable to faster grain movements as long as the shear-
ing velocity is below the capillary velocity �=� since, then,
the assumption of instantaneous liquid redistribution upon
bridge rupture is no longer justified. When this requirement
is met, the dynamics is fully controlled by �; i.e., decreas-
ing the shearing velocity or the viscosity in experiments
requires increasing � in simulations.

Using this model we simulate shear flow in the circular
split bottom shear cell with the same dimensions as in the
experiment without rough boundary conditions. However,
since the system is rotationally invariant with respect to the
z axis, we only consider a sector of the cell with arc length
# ¼ 0:0873. We use periodic boundary conditions in the�
direction, where in cylindrical coordinates, � is the angu-
lar coordinate. Note that the cylinder walls as well as the
two bottom rings are considered to be completely hydro-
phobic. In our experiments, the spatially averaged liquid
concentration is constant before shearing; thus, all bridges
are initialized with the same amount of liquid. In steady
state, for � ¼ 1 (traditional model), the liquid content
shown in Fig. 3 (black dashed line) was found to be pro-
portional to the number of contacts only, which is slightly
decreased in the shear band. The depletion observed in
experiments (thin blue curve) is, however, significantly
stronger.

For � ¼ 0, the liquid distribution after the same shear
displacement as in experiments is in good agreement
with the experimental data. The data were averaged over
5 independent runs and smoothed using a running average
filter of window size 1 mm. We also show a snapshot of the
capillary bridge network for� ¼ 0 in Fig. 2(b). Why could
the flow resistance ��1 be set so large in the simulation?
The equilibration time t0 of liquid bridges is expected to
scale as �R2=� [20]. For water and glass beads of 0.5 mm
diameter, t0 is of the order of 1–5 min [8,24,25]. Since �=�
for the glue is 562 times larger than for water, t0 for our
system is at least 9 h, which is very large compared to the
contact time of beads in the shear band. Therefore, the
liquid bridges are not equilibrated by liquid fluxes through
minimal wetting layers. However, liquid from thick
films arising via bridge rupture is still expected to fully
drain since the capillary velocity is well above the shearing
velocity v. Consequently, flow takes place mainly via bridge
rupture events leading to liquid fluxes pointing away from
the shear zone such that not only the coordination number but
also the average bridge volume is reduced inside the shear

band. The depletion should become apparent for all wetting
liquids when keeping v�=� fixed, also for water which is of
importance for most environmental applications. Lowering
v or �=� would lead to a smaller depletion but could be
controlled by� until the suction controlled model (� ¼ 1)
is recovered.
Diffusive description.—We now explain the occurrence

of the liquid depletion in terms of a theoretical model. For
simplicity, we first consider a one-dimensional shear rate
profile which, e.g., occurs in plane shear flows between
two parallel walls separated by some distance along the
z direction. We divide the plane shear geometry into slices
of thickness h along the z axis. Since � is small in our
experimental system the main transport happens via rup-
ture of individual capillary bridges. If pressure differences
are not too large, there is on average an isotropic transport
of liquid away from the rupture point which is proportional
to the volume of the ruptured bridge. Thus, the amount of
liquid leaving a slice of our model plane shear geometry
during a time interval �t is proportional to the bridge
rupture rate and to the average bridge volume in the slice.
The same holds for the neighboring slices i� 1 and
iþ 1, such that the total change of liquid in slice i can
be written as

Qiðtþ�tÞ�QiðtÞ¼��t

2
ðBi�1Qi�1

b þBiþ1Qiþ1
b �2BiQi

bÞ;
(1)

whereQi is the total amount of liquid, Bi the bridge rupture
rate, Qi

b the average bridge volume in slice i, and � is a

geometrical proportionality factor which measures the
average amount of liquid leaving a slice after each rupture
event. The bridge creation rate is neglected since the initial
volume of a liquid bridge is small. Thus, the flux induced
by bridge rupture is large compared to that by bridge
creation. The bridge rupture rate is expected to be propor-
tional to the shear rate _� and to the number of contacts N.
After dividing both sides by N and assuming that N is
slowly varying with z, we arrive at the following contin-
uum equation (for more details, see the Supplemental
Material [26])

_Qb ¼ C
@2

@z2
ð _�QbÞ (2)

on length scales larger than h, and �t ! 0. Here, C is a
constant and Qb is the average bridge volume. The parti-
cles themselves behave diffusively in plane shear flow [27].
Therefore, the liquid bridges also diffuse in space, giving
rise to an additional diffusive contribution _Qb � ð _�QbÞ00 to
Eq. (2), which could be lumped into the constant C.
A nice feature of Eq. (2) is that, for constant _�, the liquid

spreads diffusively as observed in a variety of industrial
processes [10]. However, Eq. (2) is not an ordinary diffusion
equation as _� is not a global constant. Indeed, the equa-
tion predicts that even homogeneous liquid distributions will
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change if the second derivative of the shear rate profile _�00
with respect to z is large.We nowaddress the liquid depletion
pattern observed: The shear rate profile in split bottom shear
cell geometries is Gaussian [13,28] and its width WðzÞ
increases as a function of z. Therefore, at fixed z, _�00 is smal-
lest and negative in the center of the shear band,which causes
a liquid content drop due to fluxes away from the center
induced by rupture of individual bridges. However, it is
largest and positive at the edges, which explains the accu-
mulation of liquid along the edges of the shear band.

To validate the proposed model, we simulate the simpler
linear split bottom shear cell [28], which consists of two
straight L shapes sliding past each other, and we compare
to the numerical solution of Eq. (2). We now use Cartesian
coordinates where the x direction is perpendicular and
the y direction is parallel to the slit, and the z direction is
perpendicular to the bottom plates. To ensure a homoge-
nous sample, we add a frictionless top plate on which a
force is exerted to confine the grains in the container and we
switch off gravity as well as cohesion. The dimensions of the
system are now Lx ¼ 50 mm, Ly ¼ 18 mm, and Lz �
19 mm. The bead radii are uniformly distributed between
0.735 and 0.925 mm and we use rough boundary conditions.

Our system is effectively two dimensional, since it
depends on both x and z. Thus, we generalize Eq. (2) to
_Q ¼ C4 ðj _�jQÞ, where j _�j is the second invariant of the
shear rate tensor [29]. This equation is solved over the
domain z > 0:625 mm by using von Neumann boundary
conditions, where the component normal to the boundaries
at z ¼ 0:625, 19 mm and x ¼ 0, 50 mm ofrðj _�jQÞ is set to
zero, using the same initial condition and shear rate as in
the simulation and C ¼ 0:0675 mm2. Figure 4 shows the
simulation results for Qb as a function of x and different z
(symbols), which are in good agreement with the numeri-
cal solution of the previous equation (lines). Only for
small z, the results agree less well. We attribute this to
the fact that the shear rate near the bottom rings varies
on small length scales, which is not resolved in the aver-
ages of the simulations. Note that, although the system is
mechanically in steady state, the liquid distribution still

changes over longer time scales until rðj _�jQÞ is spatially
constant.
Conclusion.—We found that liquid content decreases

within unsaturated shear bands experimentally and in
simulations. A simple model for liquid redistribution
explains this discovery while purely suction controlled
models fail. We derived a modified diffusion equation
describing bridge rupture-induced liquid migration within
the system. Our work shows that knowing how liquid is
redistributed due to shear is crucial for prolonged simula-
tions and experiments in the field of wet granular matter
where liquid depletion may induce noticeable shear soft-
ening. The equilibration time is set by the fluid properties
and grain sizes; thus, keeping the ratio between the equili-
bration and the contact time fixed is sufficient to obtain
unchanged results making our theory applicable to various
fluids and grain sizes and hence to a broad range of scientific
areas, e.g., to soil science and powder technology up to a
liquid content of 2.4% [8] where bridge coalescence sets in.
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