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We develop a boundary field theory approach to electron spin resonance in open S ¼ 1=2 Heisenberg

antiferromagnetic chains with an effective staggered field. In terms of the sine Gordon effective field

theory with boundaries, we point out the existence of boundary bound states of elementary excitations,

and modification of the selection rules at the boundary. We argue that several ‘‘unknown modes’’ found in

electron spin resonance experiments on KCuGaF6 [I. Umegaki, H. Tanaka, T. Ono, H. Uekusa, and H.

Nojiri, Phys. Rev. B 79, 184401 (2009)] and Cu-PM [S.A. Zvyagin, A. K. Kolezhuk, J. Krzystek, and R.

Feyerherm, Phys. Rev. Lett. 93, 027201 (2004)] can be understood as boundary resonances introduced by

these effects.
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Introduction.—Impurities often introduce new aspects in
physics, Kondo effect being a notable example. In particu-
lar, impurity effects in strongly correlated systems are
currently among central topics in condensed matter phys-
ics. Although the standard perturbation theory can fail,
there are a number of powerful theoretical approaches to
strongly correlated systems, especially in one dimension.
Impurity effects in gapless one-dimensional systems have
been vigorously studied in terms of boundary conformal
field theory. In contrast, impurity effects in gapped one-
dimensional systems received much less attention, with the
exception of the edge states in the S ¼ 1 Haldane gap
phase [1–3].

On the other hand, integrable models and field theories
have been successfully applied to many gapped one-
dimensional systems. In quantum magnetism, a field-
induced gap in S ¼ 1=2 Heisenberg antiferromagnetic
(HAFM) chains is described in terms of a quantum sine
Gordon field theory [4–6]; the one-dimensional Ising chain
with critical transverse field and a weak longitudinal field
realizes a quantum field theory with E8 symmetry [7,8].
Experimental studies indeed found elementary excitations
predicted by these integrable field theories. Application of
integrable field theories to impurity and boundary effects in
gapped one-dimensional strongly correlated systems is an
interesting but largely unexplored subject.

In this Letter, we present a theory of electron spin
resonance (ESR) in S ¼ 1=2 HAFM chains in a staggered
field with boundaries, which may be realized by nonmag-
netic impurities. The low-energy effective theory of the
system is the quantum sine Gordon field theory with
boundaries. In fact, this theory is integrable even in the
presence of a boundary, and boundary bound states (BBS)
of elementary excitations have been found in the exact
solution [9–14]. The existence of BBS, and modification
of the selection rules, imply extra resonances in addition to
those in the bulk. ESR measurements on corresponding

systems KCuGaF6 [15] and ½PM-CuðNO3Þ2ðH2OÞ2�n (PM
denotes pyrimidine, abbreviated as Cu-PM) [16,17] had
found several resonances that could not be accounted for
by the theory. We argue that several of those resonances
can be successfully identified in terms of the boundary sine
Gordon field theory.
Boundary sine Gordon field theory.—We consider a

semiopen chain with the Hamiltonian

H ¼X
j<0

½JSj �Sj�1��BH �g �Sjþð�1ÞjD �Sj�Sj�1�;

(1)

which models one side of an infinite chain broken by a
nonmagnetic impurity at j ¼ 0. g is the g tensor of local-
ized spins, and �B is Bohr magneton.
The Zeeman energy can be represented as

��B

P
j;a;bH

a½guab þ ð�1Þjgsab�Sbj . Hereafter, we assume

that guabg�ab and jgsabj � g, and employ a unit

@ ¼ kB ¼ g�B ¼ 1.
We considerH ¼ Hẑ applied along the z direction (ẑ is

a unit vector in the z direction). The last term of (1) is
the staggered Dzyaloshinskii-Moriya (DM) interaction.
This can be eliminated by a staggered rotation of spin
about the direction of D by angle ð�1Þj�=2, where � ¼
tan�1ðjDj=JÞ where j is the site index.
Under an applied field, this transformation leaves a

staggered field h�H�D=2, which is perpendicular to
H and to D [5,6]. Together with the staggered field due to
the staggered component of the g tensor, the effective
model may be given by

H ¼ X
j<0

½JSj � Sj�1 �HSzj � hð�1ÞjSxj�; (2)

keeping only the most important terms. h ¼ csH is the
effective staggered field, approximately perpendicular to
the applied field; the direction of the staggered field is
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chosen to be the x axis. cs depends both on the staggered
DM interaction and on the staggered part of g tensor gsab.
Using bosonization formulas,

Szx �mþ 1

2�R
@x�þ Cz

sð�1Þx cosð�=RþHxÞ; (3)

S�x � e�2�Ri ~�½C?
s ð�1Þx þ C?

u cosð�=RþHxÞ�; (4)

at low temperature T � J, the model (2) is mapped to a
boundary sine Gordon (BSG) field theory, defined by the
action

A ¼
Z 1

�1
dt

Z 0

�1
dx

�
1

2

�
1

v2
ð@t ~�Þ2 � ð@x ~�Þ2

�

� C?
s h cosð2�R ~�Þ

�
: (5)

v is the spin-wave velocity. The fields � and ~� are dual

and compactified as ���þ 2�R and ~�� ~�þ 1=R; m
is the uniform magnetization density and the nonuniversal
constants Cz

u;s and C?
u;s are determined numerically [18].

The bulk operator cosð2�R ~�Þ, which represents the
transverse staggered magnetization, is relevant in the re-
normalization group sense. Thus it induces a finite mass
(excitation gap), as it was observed in the experiments
[5,6]. The bulk gap is stable against dilute nonmagnetic
impurities.

In the absence of the staggered field term, the field �
obeys the Dirichlet boundary condition �ðx ¼ 0; tÞ ¼
const [19]. This is equivalent to the Neumann boundary
condition in terms of the dual field:

@x ~�ðx; tÞjx¼0 ¼ 0: (6)

Inclusion of the staggered field could change the boundary
condition; in fact, the staggered field in the bulk would also

induce the corresponding operator cosð2�R ~�Þ at the

boundary. If this boundary perturbation is dominant, ~�
would obey the Dirichlet boundary condition. However,

since cosð2�R ~�Þ is, as a boundary operator, (nearly) mar-
ginal in a renormalization group, its effects are negligible
at the energy scale set by the bulk spin gap. Thus, for a
small staggered field h, the boundary condition can still be

regarded as the Neumann on ~�.
Energy spectrum.—The elementary excitation of the

bulk sine Gordon field theory includes soliton (denoted
by S) and antisoliton ( �S) with the same mass M. A soliton
and antisoliton carry soliton chargeQ ¼ þ1 andQ ¼ �1,
respectively. Additional particles called breathers are
generated as bound states of a soliton and an antisoliton
[20,21]. There can be several different kinds of breath-
ers Bn with the mass Mn ¼ 2M sinðn��=2Þ, for n ¼
1; 2; . . . ; b��1c. Here b�c is the floor function. Breathers
have zero soliton charge. The soliton charge is conserved
in the bulk sine Gordon field theory. For the case of our
interest, that is experimental situations in KCuGaF6 and

Cu-PM, the parameter � ¼ 1=ð2=�R2 � 1Þ satisfies � <
1=3. In particular, � � 1=3 in the low field limit H ! 0.
Fortunately, the BSG theory (5) with the Neumann

boundary condition (6) is still integrable [9]. An analysis
of the boundary Smatrices implies [9–12,22] the existence
of the BBS with the mass

MBBS ¼ M sinð��Þ; (7)

for � < 1=2. Therefore, the BBS with MBBS �
ffiffiffi
3

p
M=2

does exist in the low field limit of the present system.
The BBS of soliton, antisoliton, and first breather turn
out to be identical and there is only one type of BBS.
This is another manifestation of the soliton charge non-
conservation at the boundary.
Thus the analysis of the BSG theory predicts a new

excited state, which is a BBS, at the energy MBBS lower
than the bulk gap M. In fact, in an earlier numerical study
of an open chain based on a density matrix renormalization
group, Lou et al. [23,24] had found such an excited state
localized near the boundary. They called it a midgap state.
Figure 1 shows a comparison of the soliton (12) and BBS
(7) masses to the numerically obtained bulk gap and the
energy of the midgap state in Refs. [23,24]. Here we used

M � 1:85ðh=JÞ2=3½lnðJ=hÞ�1=6 appropriate for H ¼ 0,
which was used in Refs. [23,24]. The excellent agreement
between the two energies means that the midgap state
found in the density matrix renormalization group calcu-
lation was nothing but a BBS.
While it was pointed out in Refs. [23,24] that the midgap

state is localized near the boundary, physical understand-
ing of its origin has been lacking. The analogy to the edge
state in the Haldane phase is clearly inappropriate, since
the S ¼ 1=2 HAFM in a staggered field is topologically
trivial. With the present identification of the midgap state
with the BBS, the BSG theory is established as an effective
theory describing the boundary physics of the system. This
is essential in understanding the ESR spectra.
Electron spin resonance.—Next we discuss the ESR

spectrum, which is given by Ið!Þ / !�00
physðq ¼ 0; !Þ.

Here, �00 is an imaginary part of the dynamical suscepti-
bility �. �þ�ðq;!Þ ¼ �GSþS�ðq; i! ¼ !þ i�Þ where

FIG. 1. Numerically obtained bulk gap (open circles) and
midgap (solid circles) in Ref. [23] are compared with the soliton
mass M and the BBS mass MBBS (7).
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positive infinitesimal � is the analytic continuation of
the temperature Green’s function GSþS�ðq; i!Þ. The stag-
gered rotation of spins by angles ð�1Þj�=2 to eliminate
the DM interaction mix the uniform (q ¼ 0) and the stag-
gered (q ¼ �) components. The physical susceptibility
�00
physðq ¼ 0; !Þ is

�00
physð0; !Þ � �00þ�ð0; !Þ þ

�
Dz

J

�
2
�00þ�ð�;!Þ; (8)

where Dz is the z component of the DM vector D parallel
to the applied field. On the right-hand side, we dropped the
longitudinal susceptibility �zzðq ¼ �;!Þ because it con-
tains the same resonances as those in the transverse part
�þ�ðq ¼ 0; !Þ, and merely modifies their intensities.

Let us first review the ESR in the bulk, in the limit of
T ! 0. The uniform part �00þ�ð0; !Þ reflects transitions
caused by the operator

S�q¼0 � e�2�Ri ~� cosð�=RþHxÞ: (9)

The operator cosð�=RÞ changes the soliton charge by �1
and thus must create at least one soliton or antisoliton. The

other factor e�2�Ri ~� can create any number of excitations
with zero soliton charge in total. Thus ESR induced by the
operator (9) with the lowest possible energy corresponds to
the creation of a single soliton or antisoliton. It should be
noted also that the factor Hx in the cosine causes the shift
of the momentum with H. That is, the created soliton or
antisoliton should carry the momentum H. Thus the ESR
due to a single soliton or antisoliton creation is at fre-

quency ! ¼ ES 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þH2

p
. There are also resonances

due to (9) at higher energies, corresponding to the creation
of additional elementary excitations.

Next we turn to the staggered part �00þ�ðq ¼ �;!Þ,
which reflects transitions caused by the operator

S�q¼� � e�2�Ri ~�: (10)

This carries zero soliton charge, and thus the simplest
excitation induced by this operator is the creation of a
single breather Bn. This leads to the resonances at
! ¼ Mn.

Now let us discuss the boundary effects on ESR. Here
we discuss the ESR spectrum based on the physical picture,
leaving systematic formulations to the Supplementary
Material [25].

First we consider the contribution of the staggered part
�00þ�ðq ¼ �;!Þ. The simplest excitation created by the
operator (10) is a single breather. In the presence of
the boundary, the first breather can form the BBS. Thus
the resonance with the lowest energy in the presence of the
boundary is given by! ¼ MBBS. Creation of a breather not
bounded at the boundary and the BBS is also possible,
leading to the resonance at ! ¼ MBBS þMn.

In order to understand the boundary effects on ESR,
we need to clarify the issue of the momentum conservation.

In general, total momentum is conserved due to the trans-
lation invariance of the system. In the presence of the
boundary, the translation invariance is lost and the total
momentum is no longer conserved. Nevertheless, the mo-
mentum is still important in discussing ESR spectra,
because the momentum of each elementary excitation is
conserved or reversed in a scattering with another elemen-
tary excitation, or in a reflection at the boundary. Thus,
once created, the set of momenta of elementary excitations
is conserved, up to the sign of each momentum.
The existence of the boundary has an interesting effect,

in addition to the contribution of the BBS, on the ESR
spectrum. Although the expectation of the operator
cosð�=RÞ vanishes in the bulk, it is nonvanishing [26,27]
near a boundary with the Dirichlet boundary condition on
� [equivalent to the Neumann boundary condition (6) on
~�]. This reflects � taking a fixed value at the boundary.
Thus, in the vicinity of the boundary, the leading contribu-
tion from the uniform part is effectively given by the

operator S�q¼0 � e�2�Ri ~� cosðHxÞ, which creates excita-

tions with zero soliton charge, in contrast to the original
one (9). This is another consequence of violation of soliton
charge conservation at the boundary. The created excita-
tions should carry the total momentum �H, up to the
uncertainty �1=lp. Here lp is the pinning length scale,

namely �ðxÞ � const if jxj< lp.

Thus, the simplest among the possible ESR processes
due to this operator is the creation of a single breather Bn

with momentum �H. This corresponds to the frequency

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

n þH2
q

: (11)

The resonance at En with n > 1 was absent in the bulk and
is a new feature due to the boundary. We emphasize that

TABLE I. Typical resonance modes in �00þ�ðq ¼ 0; !Þ.
Resonances shown in the second row are absent at T ¼ 0. The
soliton resonance ES is accompanied with all bulk resonances.
On the other hand, ES does not necessarily appear in the
boundary resonances. In fact, some boundary resonances are
involved with a novel resonance En instead of ES.

Bulk Boundary

T ¼ 0 ! ¼ ES, ES þMn ! ¼ En, ES þMBBS, En þMBBS

T > 0 ! ¼ jES �Mnj ! ¼ En �MBBS

TABLE II. Typical resonance modes in �00þ�ðq ¼ �;!Þ.
Breather masses are directly measured in the bulk part.
The BBS mass itself appears in the boundary resonances.
Equation (8) shows that intensities of these modes are smaller
than those in Table I by ðDz=JÞ2.

Bulk Boundary

T ¼ 0 ! ¼ Mn, Mn þMm ! ¼ MBBS, Mn þMBBS

T > 0 ! ¼ Mn �Mm (n > m) ! ¼ Mn �MBBS
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these new resonances do not simply follow from the
existence of the midgap state numerically found in
Refs. [23,24]. In fact, the resonance frequency En does
not explicitly contain the energy MBBS. This shows the
necessity of the BSG framework to fully understand the
physics at the boundary.

At finite temperatures, additional resonances may be
observable. When the initial state contains the BBS as a
thermal excitation, a resonance at ! ¼ Mn �MBBS exists,
corresponding to annihilation of the BBS and creation of a
breather Bn. Similarly, when the initial state contains B1,
the resonance at ! ¼ Mn �M1 þMBBS corresponds to
the creation of Bn and binding of B1 at the boundary.
These resonances are contained in the staggered part
�00þ�ð�;!Þ. The uniform part also contains, at finite tem-
peratures, additional resonances.

Typical resonance modes are summarized in Tables I
and II. Note that intensities of resonances due to the
staggered part �00þ�ðq ¼ �;!Þ and �00

zzðq ¼ �;!Þ are sup-
pressed by the factor ðDz=JÞ2 in (8), compared to those
from the uniform part �00þ�ðq ¼ 0; �Þ.

Comparison with experiments.—Thus several novel
resonances, which are absent in the bulk, are derived
from the BSG theory. They indeed match the ‘‘unknown’’
resonances observed previously in ESR spectra on
KCuGaF6 (Fig. 2) and Cu-PM (Fig. 3). Here the uniform
field effect is taken into account in the soliton-antisoliton
mass [28],

M ¼ 2vffiffiffiffi
�

p �ð�=2Þ
�ðð1þ �Þ=2Þ

�
�ð1=ð1þ �ÞÞ
�ð�=ð1þ �ÞÞ

C?
s �

2v
csH

�ð1þ�Þ=2
:

(12)

While the ratio cs ¼ h=H can in principle be determined
by the staggered DM interaction and g tensor, we use the
value obtained by fitting experimental data.

Each figure shows different resonances, though. The
difference between the spectra in two materials can be
understood in terms of the different magnitude of the
DM interaction. The coefficient cs at its maximum is larger
(0.178) in KCuGaF6 compared to 0.083 in Cu-PM. While
precise estimates of the DM interaction and the staggered g
tensor are not available, the staggered DM interaction is
presumably larger inKCuGaF6. This leads to larger mixing
of the staggered part �00þ�ðq ¼ �;!Þ. Thus it is natural that
the resonances due to the mixings are observed only in
KCuGaF6 (Fig. 2). We note that the simplest possible BBS
contribution at ! ¼ MBBS is not observed for H k a in
Fig. 2(a). This is presumably because only two of the
frequencies used in the experiments can detect the reso-
nance below the bulk resonance at ! ¼ M1. On the other
hand, in the Cu-PM with a smaller DM interaction, only
the contributions from the uniform part are observed
(Fig. 3). We conjecture that, with more careful examination

FIG. 2 (color online). Frequency vs field diagrams of ESR in KCuGaF6 [15] for (a) H k a and (b) H k c configurations. The dotted
line is high temperature paramagnetic resonance ! ¼ H. Open symbols and filled symbols represent bulk modes and ‘‘unknown
modes.’’ ES, B1, B2, B3 denotes resonances ! ¼ ES, M1, M2, M3 by a soliton S and breathers Bn. An antisoliton �S also leads to
! ¼ ES. The labels U1, U2, U3 are ‘‘unknown’’ peaks found in Ref. [15]. (a) The configurationH k a bears the smallest h ¼ csH with
the coefficient cs ¼ 0:031. An excitation ! ¼ M1 þMBBS is found in addition to the bulk excitations. (b) We have the largest
staggered field, cs ¼ 0:178, whenH k c. This large cs makes the rich kinds of boundary modes detectable. The labels BB, 2
B1 � BB,
B2 � B1 þ BB denote ! ¼ MBBS, 2M1 �MBBS, M2 �M1 þMBBS.

FIG. 3 (color online). Frequency vs field diagrams of ESR in
Cu-PM [16]. Two ‘‘unknown’’ peaks U1 and U2 are attributed to
! ¼ E2, E1 þM1 �MBBS, respectively, where En is defined in
Eq. (11). These boundary modes appear in �00

xxðq ¼ 0; !Þ.
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of the spectra, more resonances due to the BBS will be
found in experiments.

Conclusions.—We point out the existence of BBS and
modification of the selection rules at boundaries of the S ¼
1=2 antiferromagnetic chain in an effective staggered field,
in terms of the BSG theory (5). The boundary effects can
account for the mysterious ‘‘unknown modes’’ found in
two compounds KCuGaF6 [15] and Cu-PM [16,17].

In the compound KCuGaF6, magnetic ions Cu2þ and
nonmagnetic ions Ga3þ form a pyrochlore lattice.
Magnetically, the compound KCuGaF6 is effectively
regarded as S ¼ 1=2 HAFM chains of Cu2þ ions.
However, since Cu2þ and Ga3þ ions occupy equivalent
positions, an intersite mixing of them can occur in the
course of syntheses [29]. We speculate that the intersite
mixing brings about nonmagnetic impurities in spin
chains. We expect that a few percent of the nonmagnetic
impurities would lead to observation of the boundary
resonances as discussed in this Letter. Our picture may
be verified experimentally by controlling the density of
nonmagnetic impurity, which will change the intensity of
boundary resonances.
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