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We use the nonequilibrium bosonization technique to investigate the effects of the Coulomb interaction

on quantum Hall edge states at a filling factor � ¼ 2, partitioned by a quantum point contact (QPC). We

find that, due to the integrability of charge dynamics, edge states evolve to a nonequilibrium stationary

state with a number of specific features. In particular, the noise temperature � of a weak backscattering

current between edge channels is linear in voltage bias applied at the QPC, independently of the

interaction strength. In addition, it is a nonanalytical function of the QPC transparency T and scales as

� / T lnð1=TÞ at T � 1. Our predictions are confirmed by exact numerical calculations.
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Rapid experimental progress in the field of the electron
transport in one-dimensional systems has unveiled new
exciting phenomena inherent in strong, nonperturbative
interactions characteristic of such systems. The notable
examples are the recent experiments on the energy relaxa-
tion [1] and on the nonequilibrium dephasing of quantum
Hall (QH) edge states [2,3]. These chiral electron states
may be viewed as quantum analogs of classical skipping
orbits arising at the edge of a two-dimensional electron
system exposed to a perpendicular magnetic field. The
aforementioned experiments utilize quantum point
contacts (QPCs) to bring edge states of opposite chirality
close to each other in order to mix them, thereby induc-
ing electron backscattering. By applying a voltage bias
between these edge states, one may create a nonequilib-
rium state with the electron distribution function in the
form of a ‘‘double step’’ [1] (see the upper panel of Fig. 1).

The double-step distribution is characteristic of the
effectively free-fermion behavior of electrons in metals
[4]. Weak interactions lead to the equilibration of electrons
in the long-time limit. At the QH edge, however, this
distribution may evolve in a nontrivial way [5] and, in
the weak injection regime, through several intermediate
asymptotics [6], before reaching the equilibrium state. At
the origin of this behavior are the nonperturbative interac-
tion effects: For the Landau level filling factor � > 1, when
several copropagating channels coexist at the edge, the
strong Coulomb interaction leads to the formation of col-
lective excitations called edge magnetoplasmons [7] (see
the lower panel of Fig. 1). Propagating with different
velocities, these excitations strongly redistribute electrons.
We have shown earlier [8] that this process is also respon-
sible for the nonmonotonic dephasing observed in the
resent experiments [3].

Instead of determining directly the electron distribution
function, as in Ref. [1], one may investigate the effects of
interactions in a nonequilibrium state by measuring the
effective noise temperature of a system [9]. One way of

doing this in a QH system [10] is by attaching a cold Ohmic
contact to the copropagating edge channel, via the second
QPC, as shown in Fig. 2, and measuring the zero-frequency
noise power Sbs of the backscattering current jbs:

Sbs ¼
Z

dthjbsðtÞjbsð0Þi: (1)

The important property of this measurement scheme is
that, in the absence of the interaction between the channels,
one should not expect any influence of the electron injec-
tion at the first, source, QPC on the noise at the second,
detector, QPC. Therefore, by measuring Sbs as a function
of the voltage bias ��, of the transparency T of the source
QPC, and of the distance D between the QPCs, one may
investigate interaction effects and the evolution of a non-
equilibrium state initially prepared at the first QPC. In this
Letter, we demonstrate that the strong interaction and the
integrability of the charge dynamics at the QH edge lead to
the formation of a nonequilibrium stationary state, which
manifests itself in the singular, nonanalytical behavior of
the effective noise temperature.
Effective noise temperature.—In the regime of weak

tunneling at the second detector QPC, one can write [9]

Sbs ¼ GD

Z
d�ffð�Þ½1� fDð�Þ� þ fDð�Þ½1� fð�Þ�g;

(2)

where GD is the conductance of the QPC, fð�Þ is the
electron distribution function in the inner channel, and
fDð�Þ is the equilibrium distribution in the detector’s
Ohmic contact. Assuming the Fermi distribution fð�Þ ¼
fFð�� �FÞ with the temperature �eq in the inner edge

channel, and with zero temperature at the detector’s
Ohmic contact, fDð�Þ ¼ �ð�F � �Þ, one immediately finds
that Sbs ¼ ð2 ln2ÞGD�eq. Therefore, away from equilib-

rium, it is natural to define the effective noise temperature
� via the expression
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Sbs � ð2 ln2ÞGD�: (3)

On the other hand, since the inner and the outer edge
channels are electrically isolated from each other, there is
no average current contribution from the first QPC to the
inner channel, which may be expressed as

R
d�½fð�Þ �

�ð�F � �Þ� ¼ 0. Combining this identity with the expres-
sion (2), one obtains the following simple expression for
the effective noise temperature:

� ¼ ð1= ln2Þ
Z 1

�F

d�fð�Þ: (4)

Facing strong interactions that cannot be accounted for
perturbatively, one may choose to treat tunneling at the first
QPC perturbatively with respect to its small transparency
T. Recently, using this method, Ref. [11] has found that the

noise temperature � is linear in T, while nonperturbative
interactions manifest themselves in the nontrivial power-
law dependence of � on the voltage bias ��. However, it
turns out that, far from the injecting QPC, where a non-
equilibrium stationary state arises, the perturbation theory
fails to correctly describe the behavior of � at small T.
Very roughly, this happens because the weak partitioning
noise at the first QPC generates a correction to the distri-
bution function of the form fð�Þ / T��=ð�� �FÞ [6];
therefore, the integral in Eq. (4) has a logarithmic diver-
gence. At the upper limit, this integral is cut at �� �F �
��, since this is the maximum energy provided by the
source. At the lower limit, the integral has to be cut at
�� �F � T��, due to broadening of the distribution func-
tion induced by the noise. This leads to the behavior � /
T lnð1=TÞ�� at T � 1; i.e., the noise temperature is sin-
gular in T and linear in ��, contrary to the prediction of
Ref. [11]. In the rest of the Letter, we demonstrate this fact
rigorously by resumming weak tunneling using the non-
equilibrium bosonization technique [12] and investigate
various physical regimes in detail.
Model and theoretical method.—In an experiment, the

applied voltage bias �� is typically much smaller than the
Fermi energy �F. Thus, it is appropriate to use the low-
energy effective theory [13] describing the edge states at a
filling factor of � ¼ 2 as collective fluctuations of the
charge density �s�ðxÞ, where � ¼ 1, 2 enumerates chan-
nels at the QH edge and s ¼ L, M, U denotes the lower,
middle, and upper edges (see Fig. 2). The charge density
fields are expressed in terms of chiral boson fields, �s�ðxÞ,
satisfying the commutation relations

½�s�ðxÞ; �r�ðyÞ� ¼ i	
sr
��sgnðx-yÞ; (5)

namely, �s�ðxÞ ¼ ð1=2	Þ@x�s�ðxÞ. The total Hamiltonian
of the system, H ¼ H 0 þ ðAþ A0 þ H:c:Þ, contains the
term describing the edge states

H 0 ¼ 1

8	2

X
s;�;�

Z
dxdyV��ðx-yÞ@x�s�ðxÞ@y�s�ðyÞ; (6)

where the kernel, V��ðx� yÞ ¼ 2	vF
��
ðx� yÞ þ
U��ðx� yÞ, includes the free-fermion contribution with

the Fermi velocity vF and the Coulomb interaction poten-
tial U��. Vertex operators

A ¼ tei�L1ð0Þ�i�M1ð0Þ; A0 ¼ t0ei�M2ðDÞ�i�U2ðDÞ (7)

describe electron tunneling between the edge channels at
the QPCs. The right QPC, serving as a noninvasive detec-
tor, is in the weak tunneling regime. Therefore, we treat the
corresponding operator A0 perturbatively [14].
The backscattering current at the second QPC may be

written as jbs ¼ iðA0 � A0yÞ, and, to the leading order in the
tunneling operator A0, the noise power (1) of this current
reads Sbs ¼

R
dthfA0yðtÞ; A0ð0Þgi. The relatively straightfor-

ward steps lead to the standard result (2) and to the effec-
tive noise temperature (4), with

FIG. 2 (color online). Schematics of the measurement of the
effective noise temperature. The double-step distribution is
created at the left (x ¼ 0) voltage-biased QPC of the arbitrary
transparency T. The state propagates towards the right (x ¼ D)
QPC of the small transparency T0 � 1, connected to a cold
Ohmic contact, and induces the zero-frequency backscattering
current noise, Sbs. Thereby, the right QPC serves as a detector of
the effective temperature of this noise, � / Sbs. The notations
for the boson fields describing each QH edge are shown near the
corresponding edge channels: the index s ¼ L,M, U enumerates
the edges, while the index � ¼ 1, 2 enumerates the edge
channels at the same edge at a filling factor of � ¼ 2.

FIG. 1 (color online). Fermionic and bosonic aspects of the
edge state physics. Top: At zero temperature, the electron
distribution functions of the edge states arriving at the biased
QPC are f1ð�Þ ¼ �ð�F � �Þ and f2ð�Þ ¼ �ð�F þ��� �Þ. If
the transparency T of the QPC is independent of the energy,
then the distribution function of the outgoing electrons is fð�Þ ¼
ð1� TÞf1ð�Þ þ Tf2ð�Þ. Bottom: Schematic illustration of the
strong Coulomb interaction effect at the QH edge at a filling
factor of � ¼ 2. The electron wave packet of the charge e, created
in the outer edge channel (lower black line), decays into two
eigenmodes of the edge Hamiltonian, the charged and dipole
modes, which propagate with different speeds and carry the
charge e=2 in the outer channel [19]. A similar situation arises
when an electron is injected in the inner channel (upper blue line).
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fð�Þ /
Z

dte�ið���FÞtKðtÞ; (8a)

KðtÞ ¼ he�i�M2ðD;tÞei�M2ðD;0Þi; (8b)

where the normalization prefactor in (8a) is determined
by the condition fð�Þ ¼ 1 at � ! �1. The average in the
definition of KðtÞ has to be taken with respect to the
nonequilibrium state created by the source QPC.
Therefore, we apply the nonequilibrium bosonization tech-
nique proposed in our earlier work [12].

The Hamiltonian (6), together with the commutation
relations (5), generates equations of motion for the
fields �s� that have to be accompanied with boundary
conditions:

@t�M�ðx; tÞ ¼ � 1

2	

X
�

Z
dyV��ðx� yÞ@y�M�ðy; tÞ; (9a)

@t�M�ð0; tÞ ¼ �2	j�ðtÞ: (9b)

We place the boundary at the point x ¼ 0, right after
the source QPC. At low energies of interest, the character-
istic length scales are much longer than the screening
length d of the Coulomb potential U��ðx� yÞ.
Therefore, we can neglect its logarithmic dispersion and
approximate U��ðx� yÞ ¼ U��
ðx� yÞ and, conse-

quently, V��ðx� yÞ ¼ V��
ðx� yÞ. Then, Eq. (9) acquire
a form of first-order differential equations. We solve these

equations by diagonalizing the matrix V̂ � V�� with the

rotation V̂ ¼ Ŝð�Þ�̂Ŝyð�Þ by the angle � defined as
tan2� ¼ 2V12=ðV11 � V22Þ. Then, the spectrum of the col-

lective charge excitations splits into two modes, �̂ ¼
diagðu; vÞ, with the speeds u, v ¼ ðV11 þ V22Þ=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV11 � V22Þ2=4þ V2

12

q
. Imposing the boundary condition

(9b), we arrive at the solution

�M2ðx;tÞ¼�1Q1ðtuÞþ�2Q2ðtuÞ��1Q1ðtvÞþ�0
2Q2ðtvÞ;

(10a)

�1¼	sin2�; �2¼	ð1þcos2�Þ; �0
2¼2	��2; (10b)

where we have introduced the injected charges Q�ðtÞ ¼R
t
�1 dt0j�ðt0Þ and notations tu ¼ t� x=u and tv ¼

t� x=v.
Since the edge state dynamics is chiral and the screened

Coulomb interaction is effectively short range, the fields
�M� do not influence fluctuations of the currents j� at the
QPC [8,15]. As a consequence, the electron transport
through a single QPC is not affected by the interaction,
which seems to be an experimental fact [16]. Therefore,
when finding the correlator (8b), one may utilize the free-
fermion scattering theory for the statistics of injected
charges Q� [9,17].

Gaussian noise regime.—It has been shown in Ref. [6]
that a weak dispersion of plasmon modes suppresses
higher-order cumulants at large distances. Therefore,
we first focus on the situation, where the fluctuations of
the boson fields may be considered Gaussian. Then,
the logarithm of the correlation function (8b) can be writ-
ten as lnKðtÞ ¼ �h�2

M2ðD; tÞ � 2�M2ðD; tÞ�M2ðD; 0Þ þ
�2

M2ðD; 0Þi=2, where the linear terms in the field �M2

vanish, since there is no contribution to the average current
in the inner channel. Using Eqs. (10), we obtain

lnKðtÞ ¼ �2	
Z d!

!2
ð1� ei!tÞ

��
�1

	

�
2
sin2

�
!tD
2

�
S1ð!Þ

þ
�
1� �2�

0
2

	2
sin2

�
!tD
2

��
S2ð!Þ

�
; (11)

where we have introduced the noise power, S�ð!Þ ¼R
dtei!th
j�ðtÞ
j�ð0Þi, and the time delay between the

wave packets, tD ¼ D=v�D=u.
Since the transport through the injecting QPC is not

affected by interactions, the free-fermion scattering
approach [9] may be used to obtain

S�ð!Þ ¼ Sqð!Þ þ T�ð1� T�ÞSnð!Þ; (12)

where Sqð!Þ ¼ !�ð!Þ=2	 is the ground-state (Fermi sea)

contribution and Snð!Þ ¼ P
�½Sqð!���Þ � Sqð!Þ� is

the nonequilibrium part. Therefore, in the expression
(11), the ground-state and nonequilibrium contributions
separate, lnKðtÞ ¼ � ln�Ftþ lnKnðtÞ, and the noise
temperature (4) may be presented as

� ¼ � 1

2	 ln2

Z dt

ðt� i�Þ2 KnðtÞ; � ! 0; (13)

where the nonequilibrium contribution reads

lnKnðtÞ ¼ �4Tð1� TÞð�1=	Þ2

�
Z 1

0

dz

z2
ð1� zÞsin2

�
��tz

2

�
sin2

�
��tDz

2

�
:

(14)

We note that the ground-state contribution to the correlator
K is always Gaussian and is independent of the interactions
because the effect of the injecting QPC on the states below
� ¼ �F is simply a unitary transformation.
Next, we focus on the weak injection regime T � 1,

verify the validity of the perturbation approach with
respect to weak tunneling, and show that it may fail. It
turns out that the expansion of Kn with respect to T as
Kn ¼ 1þ lnKn þ � � � is dangerous because lnKn diverges
at large t and tD. More precisely, at distances D 	 Dex,
where Dex � uv=½ðu� vÞ��� is the characteristic length
of the energy exchange between edge channels [6],
its asymptotic reads lnKn ¼ �ð�2

1=2	ÞT��minðt; tDÞ.
Therefore, to leading order in tunneling at the first QPC,
the time integral in Eq. (13) diverges logarithmically. At
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the short-time limit, this integral should be cut at t�
1=��, where it behaves regularly. At the upper limit, it
is cut at either t� 1=ðT��Þ, where lnKn is not small and
the perturbation approach fails, or at t� tD, where lnKn

takes a constant value smaller than 1 if T��tD � 1. Thus,
for T � 1, the noise temperature reads

�

��
¼ �2

1T

2	2 ln2

�
lnð��tDÞ; ifDex=T	D	Dex;

lnð1=TÞ; ifD	Dex=T:
(15)

We recall the notations tD ¼ D=v�D=u and Dex ¼ uv=
½ðu� vÞ���.

It remains to investigate the noise temperature at
short distances, D � Dex. In this case, we can replace
sin2ð��tDz=2Þ ! ð��tDz=2Þ2 in Eq. (14). It is more con-
venient to substitute lnKn into Eq. (13) and first evaluate
the time integral and then the integral over z. The result for
the noise temperature reads

� ¼ �2
1Tt

2
D

24	2 ln2
ð��Þ3; D � Dex: (16)

This regime can be viewed as perturbative with respect to
both tunneling and interactions. Only in this regime does
our result for the noise temperature agree with the one of
Ref. [11].

Non-Gaussian noise: Exact results.—To complete our
analysis, we investigate the situation, where even at long
distances, D 	 Dex=T, the fluctuations of the edge fields
remain non-Gaussian. At such distances, two plasmon
modes, arriving with the time delay tD longer than the
correlation time 1=�� of boundary currents (see Fig. 1),
separate the injected charges Q� in Eq. (10a) into uncorre-
lated terms. Therefore, the correlation function K splits in
the product of four terms

KðtÞ ¼ 1ð�1; tÞ1ð��1; tÞ2ð�2; tÞ2ð�0
2; tÞ; (17)

each taking the form of the generator of full counting
statistics (FCS) [17]:

�ð�; tÞ ¼ hei�Q�ðtÞe�i�Q�ð0Þi: (18)

The correlation function (17) is independent of D; i.e., in
the limit D 	 Dex=T, electrons in the inner channel do
indeed reach a nontrivial stationary state.

We note that the FCS generator of the inner channel at
the edge M contains only the Gaussian contribution from
the Fermi sea, ln2ð�;tÞ¼�ð�2=4	2Þln�Ft, while the FCS
generator at the outer channel, being perturbed by a QPC,
acquires an additional non-Gaussian part from the transport
electrons, ln1ð�;tÞ¼�ð�2=4	2Þln�Ftþ lnnð�;tÞ. This
leads to the expression (13) for the effective noise tempera-
ture with

KnðtÞ ¼ nð�1; tÞnð��1; tÞ: (19)

We stress that in the limit �� � �F the nonequilibrium
FCS generator n depends on time only via the dimension-
less combination ��t, which is the consequence of a

free-fermion character of the electron transport through a
single QPC. Therefore, at distances D 	 Dex=T, the noise
temperature is always linear in applied voltage bias ��,
independently of details of the interaction.
In the following, we concentrate on the realistic case of a

Coulomb interaction screened at distances d 	 a, where a
is the distance between edge channels. Therefore, one may
approximate U�� ¼ 	u, where u=vF � lnðd=aÞ 	 1, so

that � ¼ 	=4 and �1 ¼ 	 [8]. The dimensionless function
nð	; tÞ can be represented as a determinant of a single-
particle operator [17] and calculated numerically [18]. The
result for the normalized noise temperature �=�� as a
function of transparency T of the injecting QPC is shown in
Fig. 3. We also plot the normalized temperature �eq=��

of an equilibrium distribution reached by electrons in the
inner channel at D ! 1,

�eq=�� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Tð1� TÞ=2	2

q
; (20)

which is found by comparing the energy flux of electrons
	2�2

eq=6 to the half of the heat flux ��2Tð1� TÞ=2
injected at the first QPC.
One can see in Fig. 3 a singular behavior of � at T ! 0

and T ! 1. In order to describe it analytically, we recall the
FCS generator for the tunneling process: lnnð�1; tÞ ¼
ð��jtj=2	ÞTðei�1 � 1Þ for ��t 	 1. Note that this FCS
generator is universal; i.e., it does not require an assump-
tion of free-electron transport at the QPC, and reflects the
simple fact that tunneling is a Poisson process with all the
current cumulants equal to the average current.
Substituting this expression into Eqs. (13) and (19) and
setting �1 ¼ 	, we find the noise temperature at T � 1 in
the non-Gaussian noise regime

FIG. 3 (color online). The normalized effective noise tempera-
ture at the detector QPC is plotted as a function of the trans-
parency T of the source QPC, generating a non-Gaussian noise.
Solid blue line: The exact value of �=�� for a nonequilibrium
stationary state at D 	 Dex=T, evaluated with the help of the
determinant representation of the FCS generator [17]. Dashed
blue line: Its asymptotic behavior (21) for T � 1 and similar
results for 1� T � 1. Dotted red line: The temperature (20) of a
locally equilibrium state at D ! 1, extracted from the energy
flux in the inner edge channel.
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�=��¼ð2=	2 ln2ÞT lnð1=TÞ; D	Dex=T: (21)

It differs from the one for the Gaussian noise, Eq. (15),
only by a numerical prefactor.

To summarize, we have investigated the effects of the
integrability of the charge dynamics at the QH edge at a
filling factor of � ¼ 2, where two chiral edge channels
coexist. We have found that the double-step electron dis-
tribution, created in one of the channels with the help of a
voltage-biased QPC, evolves via several intermediate
regimes to a nonequilibrium stationary state. Measuring
the backscattering current noise in the second, copropagat-
ing channel reveals a nontrivial effect of the integrability
and strong interchannel Coulomb interactions: The effec-
tive noise temperature � of this stationary state is a non-
analytical function of the transparency T, which scales as
� / T lnð1=TÞ at T � 1.
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