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Localization of the helical edge states in quantum spin Hall insulators requires breaking time-reversal

invariance. In experiments, this is naturally implemented by applying a weak magnetic field B. We

propose a model based on scattering theory that describes the localization of helical edge states due to

coupling to random magnetic fluxes. We find that the localization length is proportional to B�2 when B is

small and saturates to a constant when B is sufficiently large. We estimate especially the localization

length for the HgTe/CdTe quantum wells with known experimental parameters.
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The prediction and discovery of quantum spin Hall
insulators (QSHIs) [1–4] has opened a door to an unex-
pected category of topological phases in condensed matter
[5–8] and revealed a new route to investigations of edge- or
boundary-state physics [9–11]. Although the prototypes of
QSHIs [1,3] are mainly based on two copies of quantum
Hall insulators, which have been investigated for more than
three decades [12,13], it was soon realized that the funda-
mental importance of time-reversal invariance (TRI) dis-
tinguishes the two systems in a profound way [2]. Indeed,
QSHIs, unlike the Z-classified quantum Hall insulators
[14], belong to a class of two-dimensional time-reversal-
invariantZ2 topological insulators [2]. The defining feature
of QSHIs, as their name suggests, is a pair of helical edge
states that persist in the bulk insulating gap of the system
[1–4,9].

The topological power of QSHIs lies precisely in the
robustness of the helical edge states against generic per-
turbations due to unavoidable disorder in every experimen-
tal setup, unless TRI is broken. In the presence of both TRI
breaking and disorder, the helical edge states will be
localized, and the general framework of Anderson’s local-
ization theory applies [15]. Nevertheless, the localization
of the helical edge states distinguishes itself from conven-
tional one-dimensional localization when the focus is
placed on the crucial role that TRI plays in the problem.
This point becomes especially relevant as TRI can be
broken continuously, for instance, by turning on a mag-
netic field gradually. Indeed, the sensibility of transport
through helical edge states to a weak out-of-plane mag-
netic field has been demonstrated experimentally in the
measurement of magnetoconductance in topologically
nontrivial HgTe/CdTe quantum wells [4,16]. In contrast,
various experiments have shown that the edge transport
only weakly depends on the in-plane magnetic field
[4,16,17]. Related theoretical analyses have been carried
out that include the interplay between TRI breaking and
disorder but mainly consider magnetic impurities [18,19]
or a bulk short-range random potential combined with a
magnetic field [20]. A transparent edge theory that focuses

on the magnetic-field-dependent localization of the helical
edge states, however, is still missing.
In this Letter, we propose amodel that explicitly addresses

the question of how the localization of helical edge states
occurs as a weak magnetic field is gradually turned on. Our
model is based on the scattering theory of edge states in the
presence of generic long-range disorder. In particular, we
consider the existence of alternative paths for the edge states
due to, e.g., constrictions formed at the rough edges of
realistic samples [see Fig. 1], which further allows for loops
of the helical edge states. The magnetic field penetrating
through these loops results in broken TRI that is experienced
by the helical edge states in the form of finite random fluxes.
We show that these random fluxes necessarily lead to local-
ization of the helical edge states with universal behaviors in
two regimes: Immediately after the magnetic field is turned
on, the localization length becomes finite and decreases as
B�2; when the standard deviation of the random fluxes
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FIG. 1 (color online). (a) Helical edge states in a disordered
QSHI in a uniform magnetic field. Occasional occurrences of
constrictions along the edge lead to Fabry-Perot-type loops
where Aharonov-Bohm phases due to magnetic fluxes can
accumulate. (b) The scattering of the helical edges by one of
these loops can be divided into two parts: the scattering between
two pairs of helical edge states and the propagation of one of
these pairs around the loop. (c) Relevant scattering probabilities
in the first part.
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(proportional toB) is larger than onemagnetic flux quantum,
the localization length saturates to a constant. In between
these two regimes, damped oscillations of the localization
length may arise depending on the distribution of the
random fluxes. Our results provide a clear illustration of
the symmetry-breaking-induced localization in QSHIs.

We start to introduce our model by considering one of its
possible realizations, depicted in Fig. 1. Th.e edge rough-
ness of a realistic QSHI sample may lead to occasional
constrictions (at one edge) where the helical edge states
can either tunnel across or pass around. As a consequence,
loops can form and attach to the propagating path of the
helical edge states. When a perpendicular magnetic field is
applied to the sample [21], each of these loops acts as a
magnetic flux impurity, to be distinguished from usual
magnetic impurities. Individually, such an impurity works
like a Fabry-Perot scatterer [see Fig. 1(b)], where the
scattering probability amplitudes depend on the
Aharonov-Bohm (AB) phase, owing to the magnetic flux,
acquired by electrons circling around the loop. The collec-
tive action of a random distribution of these scatterers
causes localization of the helical edge states with an
explicit dependence on the magnetic field. The main part
of this problem can be tackled consistently by scattering
theory, as we now show.

To analyze the scattering of the helical edge states by a
single magnetic flux impurity [see Fig. 1], we divide the
full scattering process into two effective parts: the local
scattering between two pairs of helical states and the free
propagation of one pair of helical states that closes the
loops. For simplicity, we assume that the first part does not
depend on a magnetic field and, hence, respects local TRI,
while the second part contains the entire information about
the magnetic flux by means of AB phases that enter the
propagators [22].

Owing to the local TRI, the scattering between two pairs
of helical states, described by a 4� 4 scattering matrix S,
has the following constraint:

S ¼ �Sy��1; (1)

where� is the time-reversal operator. We choose a specific
basis ordered as (R1, L1, L2, R2), where Ri (Li) stands for
the right (left) mover of the ith Kramers pair (i ¼ 1, 2),
such that � ¼ 12 � ð�i�y�Þ with �y the Pauli matrix and

� the complex-conjugate operator. Consequently, the scat-
tering matrix S satisfying Eq. (1) necessarily has the fol-
lowing form:

S ¼

t1 0 r0 s0

0 t1 �s r

r �s0 t2 0

s r0 0 t2

0
BBBBB@

1
CCCCCA: (2)

Here ti stands for the direct transmission for Kramers pair
i; r (r0) stands for the reflection from a right (left) mover to

a left (right) mover; s and s0 represent the transmission by
switching to another Kramers pair. Importantly, zeros in S
signify the absence of direct backscattering within one
Kramers pair due to TRI. By taking into account the
unitarity of the scattering matrix, the parametrization of
S can be further simplified as (up to an unimportant global
phase factor) t1 ¼ �t�2 ¼ t, r0 ¼ r�, s0 ¼ s�, and T þ Rþ
Ts ¼ 1, where T ¼ jtj2, R ¼ jrj2, and Ts ¼ jsj2.
The free propagation of Kramers pair 2 leads to a

scattering matrix S� given in the basis (L2, R2) by

S� ¼ eið’þ�Þ 0

0 eið’��Þ

 !
(3)

with ’ the dynamical phase and � the AB phase (equal to
the total flux enclosed by the loop in units of h=2�e).
Therefore, the final scattering matrix S for Kramers pair
1, in the basis (R1, L1), reads

S ¼ jtj þ RZþ þ TsZ� �ðrsÞ��Z
�rs�Z jtj þ RZ� þ TsZþ

 !
; (4)

where

Z� ¼ eið’��Þ

1þ jtjeið’��Þ ; �Z ¼ Zþ � Z�; (5)

and the phase of t� has been absorbed into the dynamical
phase ’. The backscattering probability can be obtained
immediately:

R ¼ RTs

T

sin2�

j cos�þ coshðlnjtj þ i’Þj2 : (6)

Evidently, for the helical edge states to be backscattered
with finite probability, two conditions must be fulfilled.
First, it is necessary that both R and Ts are finite. If one of
these two tunneling probabilities is zero, the system essen-
tially reduces to two decoupled copies of quantum Hall
edge states, and backscattering is known to be prohibited
for either copy [23]. Only when both tunneling processes
(R and Ts) are allowed does the system belong truly to the
Z2-classified symmetry class where TRI plays a central
role. It follows that the second necessary condition for
backscattering to occur is to break the global TRI by
having � � 0 mod �. The cooperation of these two con-
ditions clearly illustrates the underlying protection mecha-
nism, from the scattering point of view, for the helical edge
states of QSHIs.
At disordered sample edges, the magnetic flux impuri-

ties will occur randomly, and the helical edge states will
eventually be localized. Here, we assume not only that the
variables (including phases and scattering amplitudes) for
each individual scatterer are random but also that different
scatterers are independent. In this scenario, the total trans-
mission probability T N through N scatterers obeys the
following scaling law [24] (see also Supplemental
Material [25])
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hlnT Ni ¼ hlnT N�1i þ hlnj�Nj2i; (7)

where j�Nj2 is the transmission probability for the N-th
scatterer. The inverse localization length � ¼ 1=‘loc is
defined as [24,26,27]

� ¼ � lim
N!1

n

N
hlnT Ni; (8)

where n is the linear density of the scatterers. Thanks to the
scaling law, � can be expressed in terms of the scattering
amplitudes for a single scatterer:

� ¼ �nhlnð1�RÞi ’ nhRi; (9)

where we have assumed weak backscattering for each
individual scatterer (R � 1). The average over the arbi-
trary dynamical phase ’ can be carried out exactly and
yields

� ¼ n

�
RTs

Rþ Ts

1þ T

T

sin2�

sin2�þ ð1�TÞ2
4T

�
: (10)

By further using the fact that � ¼ BAð2�e=hÞ, where the
magnetic field B is taken to be uniform and A is the area
enclosed by the helical loops, we will need only to average
over distributions of the scattering amplitudes and the area
A in order to estimate the localization length ‘loc ¼ 1=�.
One immediate consequence of Eq. (10) is that the local-
ization length is magnetic-field-symmetric, which is cer-
tainly expected.

An important regime that we are particularly interested
in is the weak magnetic-field regime, where B �A � h=e
with �A the mean of A. In this regime Eq. (10) becomes
(assuming T is not too close to 1)

� ¼ �B2 (11)

with � ¼ 4nð2�e=hÞ2hRTsð1þ TÞ=ðRþ TsÞ3ihA2i a con-
stant factor for given distributions of scattering amplitudes
and A. The B2 dependence of the inverse localization
length here is a universal result of our model in the sense
that it does not depend on the specific distributions of
variables for individual scatterers. It implies that the local-
ization length of the helical edge states is finite at a weak
magnetic field and diverges only as 1=B2 when the mag-
netic field is vanishing. Furthermore, the low-temperature
magnetoconductance of a QSHI should also vary as B2

in the weak magnetic-field limit, that is, �GðBÞ ¼ Gð0Þ �
GðBÞ / B2. This contrasts our result with the linear mag-
netoconductance behavior previously found on a lattice
model with bulk impurity potentials [20].

Another interesting regime is when the magnetic field is

strong enough such that both B �A and B�A [with �A �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihðA� �AÞ2ip
being the standard deviation] are larger than a

flux quantum h=e. In this regime we can approximate the
average in terms of A as an average over a uniform distri-
bution of �, which yields

�sat ¼ 2n

�
RTs

Rþ Ts

�
: (12)

This especially simple result again shows a universal
behavior in our model—the inverse localization length
saturates at a sufficiently strong magnetic field irrespective
of the specific distributions of scattering variables.
However, the actual value of �sat certainly depends on
the distributions of R and Ts. Moreover, the above formula
reemphasizes the importance of allowing both tunneling
processes represented by R and Ts to evoke a true protec-
tion mechanism due to TRI.
In between the two regimes discussed above, we need

to consider the specific distributions of the variables in
Eq. (10). Let us first focus on the behavior of � by assum-
ing that A has a Gaussian distribution characterized by the
mean �A and the standard deviation �A. It is instructive in
this case to look at the function �ðBÞ � ½ð1þ TÞ=2T��
hsin2�=½sin2�þ ð1� TÞ2=4T�iA with the average taken
only in terms of A. �ðBÞ has been defined such that it
saturates to the value 1 at a sufficiently strong magnetic
field. In Fig. 2, we plot the numerically obtained �ðBÞ for
various T and fixed �A and �A. Right after the magnetic
field is turned on, �ðBÞ shows a quadratic increase irre-
spective of the assumed T or the distribution of A. Before
�ðBÞ saturates, it undergoes damped oscillations when
�A= �A is small. These oscillations are due to the collective
AB effect for the helical loops in our model: The loops
enclosing a similar area lead to AB oscillations of a similar
period; they contribute coherently to the backscattering of
the helical edge states; the magnetic-field dependence of
the total transmission is thus shaped by the AB effect at
individual scatterers when B�A is significantly smaller
than �0 ¼ h=e. The period of the oscillations is roughly
�0=2 �A, where the factor 1=2 is obviously a consequence of
� (and hence �) depending only on sin2�. The overall
amplitude of the oscillations is suppressed for large T and
enhanced for small T. The reason is intuitively clear: The

FIG. 2 (color online). �ðBÞ for different values of T, where A is
assumed to take a normal distribution with �A= �A ¼ 0:3.
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more the helical edge states are scattered into the loops, the
more pronounced the resulting AB effect.

Now we address the issue of the scattering amplitudes
which have only been assumed to be phenomenological
parameters in the scattering matrix S so far. To this end, we
investigate a constriction depicted in Fig. 3, which is
described by the following effective Hamiltonian:

H ¼

@vFk̂x 0 mðxÞ �ðxÞ
0 �@vFk̂x ��ðxÞ mðxÞ

mðxÞ ��ðxÞ �@vFk̂x 0

�ðxÞ mðxÞ 0 @vFk̂x

0
BBBBB@

1
CCCCCA; (13)

where vF is the Fermi velocity for the helical edge states,
mðxÞ and �ðxÞ represent x-dependent coupling between the
edge states, and the basis is ordered as (R1, L1, L2, R2). The
above Hamiltonian manifestly respects TRI: H ¼
�H��1 [22]. This Hamiltonian can be derived from
microscopic models such as the Bernevig-Hughes-Zhang
model for HgTe=CgTe quantum wells [3,4,16,28,29]. For
simplicity, we take mðxÞ ¼ mW	ðxÞ	ðL� xÞ and �ðxÞ ¼
�W	ðxÞ	ðL� xÞ with 	ðxÞ the Heaviside step function and
mW and �W two constants determined by the constriction
separationW. In the case of HgTe=CgTe quantum wells, a
nonvanishing � term owes its existence to the presence of
bulk-inversion asymmetry [4,16].

The scattering amplitudes for this constriction, corre-
sponding to S in Eq. (2), can be easily derived (see
Supplemental Material [25]):

t ¼ i cosð�WL=@vFÞ=
; (14)

s ¼ sinð�WL=@vFÞ=
; (15)

r ¼ mW sinðqLÞ=@vFq
; (16)

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2

W

q
=@vF can be either real or imagi-

nary, depending on the energy E, and 
 ¼ jðE=@vFqÞ�
sinðqLÞ þ i cosðqLÞj is a normalization factor. Clearly,

r vanishes when mW ¼ 0, which shows the fact that m
couples R1 (L1) to L2 (R2); s vanishes when �W ¼ 0,
which shows the fact that � couples R1 (L1) to R2 (L2).
For low energy (jEj<mW) scattering states, R=ðT þ TsÞ ’
sinh2ðmWL=@vFÞ if jEj � mW , and R=ðT þ TsÞ ’
ðmWL=@vFÞ2 if jEj ’ mW , meaning that the reflection
dominates as long as L is large compared with @vF=mW .
In this regime, Eq. (10) reduces to � ’ 4nhTsihsin2�i.
More generally the average with respect to the scattering

amplitudes has to be performed numerically by taking
certain distributions of W and L (at a certain energy E).
The advantage of this change of variables is that W and L,
unlike the scattering amplitudes, are in principle indepen-
dent to each other. In total, this leads to three independent
geometric variables, W, L, and A, that remain to be aver-
aged on in our final evaluation of � as a function of
magnetic field B (we leave the density n of scatterers as
a parameter). After carrying out these averages numeri-
cally (see Supplemental Material [25]), we show the typi-
cal results in Fig. 4. The qualitative behavior of �ðBÞ in
Fig. 4 is essentially the same as that of �ðBÞ in Fig. 2,
except that �ðBÞ is shown for various ratios �A= �A whereas
the scattering amplitudes have been averaged out. As
universal features, � increases as B2 at a weak magnetic
field and saturates at a sufficiently strong magnetic field.
Despite the fact that the exact value of �sat depends on the
energy E and the distributions of W and L, the order of
magnitude of �sat turns out to be consistently 0:01n for all
cases with realistic considerations (see Supplemental
Material [25]). We also observe in the intermediate regime
damped oscillations of � which are pronounced if �A= �A is
small but suppressed as long as �A= �A is close to or larger
than 1. We point out that the localization length has a local
maximum (minimum) whenever B is roughly an integer

W

L

R1 R1L1 L1

L2 R2 L2 R2

x

FIG. 3 (color online). A schematic view of a constriction
where two pairs of helical edge states (indicated by the linear
bands) are coupled (indicated by the mixed bands) in a region of
length L and separation W.

FIG. 4 (color online). Inverse localization length � as a func-
tion of magnetic field B, for different distributions of loop area
A. It shows a B2 increase in the weak B limit (inset) and a
saturation at a relatively high field. In between, damped oscil-
lations may occur if �A= �A < 1. The saturation value �sat is
sample-dependent but has an order of magnitude 0:01n (with n
the linear density of the scatterers) in our realistic estimations.
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(half-integer) multiple of �0=2 �A—this is where the TRI is
maximally preserved (broken).

In summary, we have investigated a simple yet
illuminating model that demonstrates a magnetic-field-
dependent localization of the helical edge states in quantum
spin Hall insulators. We have identified universal, sample-
independent features, as well as an interesting but sample-
specific feature in thismodel.With known parameters for the
HgTe=CgTe quantum wells, we have also estimated quanti-
tatively the localization length. Both the qualitative and the
quantitative results can be examined by experiments.
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