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A field theory of the Anderson transition in two-dimensional disordered systems with spin-orbit

interactions and time-reversal symmetry is developed, in which the proliferation of vortexlike topological

defects is essential for localization. The sign of vortex fugacity determines the Z2 topological class of the

localized phase. There are two distinct fixed points with the same critical exponents, corresponding to

transitions from a metal to an insulator and a topological insulator, respectively. The critical conductivity

and correlation length exponent of these transitions are computed in an N ¼ 1� � expansion in the

number of replicas, where for small � the critical points are perturbatively connected to the Kosterlitz-

Thouless critical point. Delocalized states, which arise at the surface of weak topological insulators and

topological crystalline insulators, occur because vortex proliferation is forbidden due to the presence of

symmetries that are violated by disorder, but are restored by disorder averaging.
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Topology can have a profound impact on Anderson
localization in disordered electronic systems. This was first
understood in the integer quantum Hall effect [1,2], where
the two-dimensional (2D) bulk states at the plateau tran-
sition are extended, even in the presence of strong disorder.
Subsequently it was recognized that topological insulators
(TI) exhibit boundary states that similarly remain extended
in the presence of time-reversal (TR) invariant disorder
[3–5]. In the field theory of localization, this delocalization
is associated with the presence of topological terms in the
nonlinear � model (NL�M) [6–10].

A shortcoming of the conventional scaling theory of
localization [11–14] is that it involves only a single pa-
rameter, the conductivity. It cannot distinguish the trivial
insulator from the TI, and it does not explain the metallic
phase that generically occurs between them [15–17]. A
related difficulty is revealed by recent studies of surface
states of 3D weak TIs (WTI) [18–20] and of topological
crystalline insulators (TCI) [21,22]. General arguments, as
well as numerics, suggest that these surfaces remain delo-
calized even with strong disorder, due to symmetries that
are violated by disorder, but remain unbroken on average.
This led to the suggestion that there should be a second
symmetry breaking parameter in the scaling theory [19].
This poses the question of how average symmetries fit into
the field theory of localization, and what the role of the
second parameter is.

In this Letter we answer those questions by examining
the crucial and largely unexplored role played by topologi-
cal defects in the NL�M in the 2D symplectic class [23].
We show that localization is driven by the proliferation of
pointlike Z2 vortices, and that the sign of the vortex

fugacity distinguishes a TI from a trivial insulator. We
find that average symmetries can place the system on a
line where the vortex fugacity vanishes, dictating delocal-
ization. This analysis also provides new insight into the 2D
symplectic metal-insulator transition. We find two distinct
but equivalent fixed points describing transitions to insu-
lator and TI states. By treating the number of replicas, N as
a continuous variable, we show that for N ¼ 1� � the
Anderson transition fixed points are perturbatively con-
nected to the Kosterlitz-Thouless (KT) transition fixed
point [24] for � ! 0. This allows us to compute the critical
conductivity and correlation length exponent perturba-
tively in an � expansion.
Before describing the symplectic class, we briefly

discuss a simpler version of delocalization via average
symmetry in the unitary class. The surface of a 3D strong
TI (STI) is delocalized [9,25], but TR violating perturba-
tions lead to localization. The localized state is in a
sense ‘‘half’’ of a quantum Hall state and has �xy ¼
�e2=2h. Importantly, the time reverse of this state, with
�xy ¼ �e2=2h, is topologically distinct. If impurities

have random local moments so TR symmetry is unbroken
on average then the system is precisely at the transition
between the two localized states. This can be modeled by
an ensemble in which each member violates TR, but the
whole ensemble is TR invariant. This is described by a
NL�M in the unitary class, which in 2D allows a topo-
logical term [6] characterized by an angle � related to the
Hall conductivity. Since TR, applied to the ensemble, takes
� to ��, average TR symmetry constrains � to be 0 or �.
The surface of a STI corresponds to � ¼ �, so the surface
is precisely at the critical point of the quantum Hall plateau
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transition [26]. If the average symmetry is broken by an
applied magnetic field, then the system flows to a localized
phase with �xy ¼ �e2=2h.

WTI and TCI surfaces also have discrete average sym-
metries. For a layered WTI it is translation by one layer.
For the TCI studied in Ref. [22], it is a mirror symmetry.
Breaking the symmetry gaps the surface, leading to local-
ization. However, applying the symmetry to the gapped
state leads to a topologically distinct localized state, so
that there exists a 1D helical edge mode at the interface
between the two localized states. If the symmetry is
respected on average, then the system is at the boundary
between the two localized states. It is clear that even
for strong disorder, the system cannot be localized at
this point because a change in topological class can
only occur when extended states are present at the Fermi
energy.

To develop a field theory for this delocalization, we use
the fermionic replica theory introduced by Efetov et al.
[13]. Our analysis closely parallels that of Ryu et al. [9].
We consider a system with average Hamiltonian H 0 and
Gaussian correlated TR invariant disorder. Using the rep-
lica trick, the disorder averaged product of retarded and
advanced Green’s functions can be generated from the
partition function Z ¼ R

D½ �c ; c �e�S, with

S ¼
Z

d2r

�
�c a½ðH 0 � EÞ�ab þ i��ab�c b

� g

2
ð �c ac bÞð �c bc aÞ

�
: (1)

Here a ¼ 1; . . . ; 2N is an index for N retarded and N
advanced replicas, and � ¼ 1N � ð�1ÞN , where 1N is an
N � N identity matrix. g is a coupling constant that char-
acterizes the disorder strength, and c a is a Grassmann field
that includes (suppressed) spin, position, and possibly
orbital indices. �c a � c T

ai�
y, where � acts on the spin

indices. TR requires�yH 0�
y ¼ H �

0, so i�
yðH0 � EÞ is a

skew symmetric matrix. For � ¼ 0, (1) is invariant under
Oð2NÞ rotations among the replicas, which is broken down
to OðNÞ �OðNÞ by �.

A theory of the Nambu Goldstone modes associated
with this symmetry breaking is formulated by Hubbard
Stratonovich decoupling the four fermion interaction and
performing a saddle point expansion about the broken
symmetry state. After freezing the massive modes, the
saddle point is characterized by a 2N � 2N matrix field
Q ¼ OT�O, with O 2 Oð2NÞ. Distinct values of Q
belong to the coset G=H ¼ Oð2NÞ=OðNÞ �OðNÞ and sat-
isfy Q ¼ QT , Q2 ¼ 1. A theory for the long wavelength
fluctuations in Qab is obtained by integrating c a in the

background of a spatially varying Qab. This gives Zeff ¼R
D½Q�e�Seff ½Q� with

e�Seff ½Q� ¼
Z

D½ �c ; c �e�
R

d2r½ �c a½ðH 0�EÞ�abþi�Qab�c b�: (2)

Here � is a parameter characterizing the bare scattering
time that is determined self-consistently at the saddle
point. Expanding in gradients gives the NL�M,

S0eff½Q� ¼ 1

32�t

Z
d2rTr½ðrQÞ2�; (3)

where the coupling constant t characterizes the disorder
strength and is related at lowest order to the resistivity,� ¼
ð2�tÞ�1e2=h. The renormalization of t at long wavelengths
is described by the perturbative renormalization group
(RG) equation [13,14,27–29]

dt=d‘ ¼ �ðtÞ; �ðtÞ ¼ 2ðN � 1Þt2 þ 	 	 	 : (4)

In the replica limit, N ! 0, the weak coupling fixed point
t ¼ 0 is stable, indicating the stability of the symplectic
metal phase, characterized by weak antilocalization.
Equation (3) is not the whole story because topologically

nontrivial configurations of Q can have important non-
perturbative effects. There are two types of topological
configurations associated with the nontrivial homotopy
groups �1ðG=HÞ ¼ �2ðG=HÞ ¼ Z2 [10]. �2ðG=HÞ allows
a topological term that prevents localization on the surface
of 3D TI [8,9]. That term is absent in purely 2D systems as
well as WTI or TCI surfaces. For our problem, the crucial
topological objects are pointlike defects similar to vortices
that are allowed by the nontrivial �1ðG=HÞ. These defects
are necessary for localization, and their contribution to Zeff

encodes the distinction between a trivial insulator and TI.
The role of vortices can be understood by considering an

inhomogeneous 2D system in which a TI in region S with
boundary C is surrounded by a trivial insulator [Fig. 1(a)].
Imagine integrating out c a in (2) in the presence of a
vortex configuration QabðrÞ. Since the interior of S has a
finite gap, the dominant contribution comes from the 1D
helical edge states at the boundary C. On C, Qabðr 2 CÞ is
a nonsingular and noncontractible configuration corre-
sponding to the nontrivial element of �1ðG=HÞ.
Repeating the analysis of Ryu et al. [9] for 1D helical
states, we find a topological term in the 1D NL�M [10],

e�Seff ½Q� / ð�1ÞnðCÞ; (5)

where nðCÞ ¼ 0, 1 is the Z2 homotopy class of Q on C.
Importantly, since Q is defined in all space (except at the
cores of vortices), nðCÞ is equal to the number of vortices

FIG. 1. (a) A 2D TI (m< 0) in region S with boundary C is
surrounded by trivial insulator (m> 0). The sign of Zeff depends
on the number of vortices in S. (b) For m ¼ 0 the eigenvalues of
H eff in (10) exhibit a linear zero crossing, which leads to a
vanishing vortex fugacity.
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inside the TI mod 2. This leads to a bulk characterization of
the TI based on the 2D NL�M: in the TI the fugacity v of
Z2 vortices is negative. In the trivial insulator the topologi-
cal term is absent and v > 0, which is obvious for vanish-

ing spin-orbit coupling since e�Seff ½Q� is a perfect square
due to spin degeneracy.

At the transition between the trivial and TI, v must pass
through zero. This suggests v ¼ 0 at the WTI surface. To
demonstrate this explicitly, we model a WTI as a layered
2D TI with helical edge modes H ¼ vx�xkx stacked in
the y direction with separation a. Coupling between layers
gaps the surface, except at two Dirac points at ðkx; kyÞ ¼
ð0; 0Þ and (0, �=a). Indexing the Dirac points by �z ¼ �1,
the surface states are described by

H0 ¼ vx�xkx þ vy�y�zky þm�y�y: (6)

The symmetry of the WTI under translation by one layer is
described by expðipyaÞ ¼ �z. Dimerization of the layers

breaks this translation symmetry, and generates a mass
term m�y�y [19]. This is the only mass that respects TR.

The topologically distinct dimerization patterns are distin-
guished by sgnðmÞ. The sign reversal of the Dirac mass m
also describes the low-energy theory of the 2D transition
between a trivial and topological insulator [30].

Equation (3) should include a sum over vortex configu-
rations inQ. The vortex fugacity is determined by compar-
ing (2) in the presence and absence of vortices. Consider
the simplest vortex configuration involving a single
retarded and advanced pair of replicas. This can be
expressed in terms of a one-parameter family of Q’s of
the form

Qð�Þ ¼ 1N�1 � cos� sin�
sin� � cos�

� �
� 1N�1: (7)

A Z2 vortex is then a configuration where � winds by an
odd multiple of 2�.

The Grassmann integral in (2) defines a Pfaffian, so that
the vortex fugacity may be written

v ¼ Pf½i�yDðQÞ�
Pf½i�yDðQ0Þ� ; (8)

where Q is a vortex configuration, and Q0 ¼ �. In the
space of the two nontrivial replicas we have

DðQÞ ¼ ðH 0 � EÞ þ i�ð	z cos�þ	x sin�Þ: (9)

Here 	z is a Pauli matrix in the space of the two nontrivial
replicas. To evaluate the Pfaffian, we use a trick similar to
that used by Ryu et al. [9] and compute ðPf½i�yD�Þ2 ¼
det½i�yD� ¼ det½	yD�. This is useful because 	yD �
H eff is a Hermitian operator given by

H eff ¼ 	yðH 0 � EÞ þ �ð	x cos��	z sin�Þ; (10)

so the determinant is the product of its real eigenvalues. The
TR symmetry of the original H 0 becomes a particle-hole

symmetry, fH eff ;�g ¼ 0, with � ¼ 	y�yK. Moreover,
when m ¼ 0, H eff decouples into two independent
Hamiltonians for �z ¼ �1. Each is identical to a topologi-
cal superconductor in class D, with � playing the role of the
superconducting phase. There are two zero modes indexed
by �z ¼ �1 bound to the core of aZ2 vortex. Form � 0, the
zero modes couple and split [Fig. 1(b)]. Thus det½	yD� has
a second-order zero atm ¼ 0, so Pf½i�yD� has a first-order
zero, which involves a sign change as a function ofm. This
shows that v ¼ 0 for m ¼ 0, so isolated Z2 vortices are
forbidden at the WTI surface. With multiple vortices the
zero modes will split even for m ¼ 0, leading to a nonzero
Pfaffian. However, since the splitting vanishes exponen-
tially in the separation, the vortices will be confined by a
linear potential.
It is thus clear that the vortex fugacity v is a crucial

variable in the NL�M. The TI and trivial insulator involve
vortex proliferation and are distinguished by sgnðvÞ. For
v ¼ 0, qualitatively different behavior is expected reflect-
ing the delocalization of the WTI or TCI surfaces. For
v ¼ 0 the target space of the NL�M effectively lifts to

its double cover, ~G= ~H ¼ SOð2NÞ=SOðNÞ � SOðNÞ, for
which �1ð ~G= ~HÞ ¼ 0. Since G=H and ~G= ~H have identical
local structure, their perturbative � functions will be iden-
tical. It is useful to first consider this behavior as a function
of the replica number, N.
For N > 1, �ðtÞ> 0, and the weak coupling fixed point

is unstable, leading to a disordered phase even for v ¼ 0.
This phase is ‘‘less disordered’’ than the v � 0 disordered
phase though. The confinement of Z2 vortices leads to a
topological order similar to a Z2 spin liquid [31]. This can
be seen by placing the system in a torus: there are four
topologically disconnected sectors corresponding to the
homotopy classes of Q 2 G=H along the two large loops.
When v is turned on in this disordered phase, the Z2

vortices immediately condense. The v ¼ 0 line thus
describes a first-order transition between the v > 0 and
v < 0 phases.
The behavior for N ! 0 is expected to be qualitatively

different. In this case the weak coupling fixed point is
stable and describes an ordered phase, which is present
even for d 
 2 [32]. More importantly, the arguments for
the absence of localization under strong disorder presented
above prove that for v ¼ 0 the NLSM at strong coupling
cannot be in a disordered phase. It is useful to consider the
critical value N ¼ 1 that separates these behaviors. The
theory for N ¼ 1 is simply the XY model, and Q is fully
parametrized by � in (7). Equation (3) becomes

SN¼1 ¼ 1

16�t

Z
d2rðr�Þ2: (11)

Since the target space, S1, is flat, �ðtÞ ¼ 0 to all orders.
Vortices modify the behavior. For small t, 2� vortices in
� are bound, and the system flows to a fixed line
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parametrized by t. For t > t� ¼ 1=16 vortices unbind at a
KT transition [24] to a disordered phase.

We now consider the behavior for N < 1, treating N as a
continuous variable. Since Z2 vortices are present for allN,
it is reasonable to examine their effects as a function on N.
We find that the theory can be controlled for N ¼ 1� �,
with � � 1. To lowest order in � and v, the KT flow

equations are modified by the nonzero (but small) �ðtÞ �
ðN � 1Þ ~�ðtÞ,

dt=d‘¼�� ~�ðtÞþv2; dv=d‘¼ð2�ð8tÞ�1Þv: (12)

To this order, we are free to set the coefficient of v2 to 1 by
rescaling v. The RG flows are shown in Fig. 2. There are
two fixed points at

t� ¼ 1=16; v� ¼ �½� ~�ðt�Þ�1=2: (13)

For small �, these fixed points are within perturbative
range of the KT fixed point. They describe a transition
between the ordered and disordered phases of the
Oð2NÞ=OðNÞ �OðNÞ NL�M for N < 1. For N ! 0 we
identify these fixed points with the Anderson transitions
between the symplectic metal and the trivial insulator or
the topological insulator. Our theory implies that these two
transitions have identical bulk critical behaviors, since the
total number of Z2 vortices in a closed system is always
even, so their total contribution to the partition function is
always positive.

By expanding (12) about the fixed point, we can identify
the critical conductivity and the correlation length expo-
nent associated with the symplectic Anderson transition.
To lowest order in � we find �� ¼ ð2�t�Þ�1e2=h ¼
ð8=�Þe2=h and 
 ¼ 2t�=½� ~�ðt�Þ�1=2. While ~�ðt�Þ is not

known exactly, �ðtÞ has been computed perturbatively up
to order t5 [28]. The small value of t� is well within the
range of this perturbation theory. The second-order term
gives only 6% correction and the higher terms are even

smaller. Using the first term from (4) we find 
 ¼ ð2=�Þ1=2.
Extrapolating to � ¼ 1 gives

�� � 2:5e2=h; 
� 1:4: (14)

These values are rather different from numerical esti-
mates in previous model studies, which give �� � 1:4e2=h
and 
� 2:7 [16,33–35], though early work on the metal to
TI transition found 
 ¼ 1:6 [15]. We suggest two possible
origins of the discrepancy, depending on the behavior of
the N ¼ 0 NL�M at strong coupling, which cannot be
accessed in the present analysis. One possibility is that
for N ! 0, �ðtÞ< 0 for all t along the line v ¼ 0. The
corresponding RG flow and phase diagrams are shown in
Figs. 2(a) and 2(b). In this case, the symplectic metal-
insulator transition is governed by the fixed point (t�, v�).
The discrepancy in exponents is then most likely due to
the slow convergence of the � expansion similar to the
d ¼ 2þ � expansion for the 3D Anderson transition.
A second possibility is that forN ! 0,�ðtÞ changes sign

at a critical point tm on the line v ¼ 0, as hypothesized in
Ref. [8] in a different context. In fact, tm is present for
N ¼ 1� �. For N ¼ 1, double vortices are allowed and
will in general have nonzero fugacity. The theory with both
single and double vortices can be analyzed using a dual
sine Gordon theory,

S ¼
Z

d2r
t

�
ðr’Þ2 þ v cos’þ v2 cos2’; (15)

where v2 is the fugacity for double vortices. When v ¼ 0,
v2 becomes relevant at tm ¼ 1=4. When v2 flows to strong
coupling, v ¼ 0 describes a first-order transition similar to
the case when N > 1. It is unlikely that this first-order
transition persists toN ¼ 0, which is a theory of disordered
noninteracting electrons. Instead, the most likely scenario
is a continuous direct transition between trivial insulator
and TI controlled by a strong coupling fixed point ts, as
indicated in Figs. 2(c) and 2(d). In this scenario, while the
ultimate critical behavior is controlled by the identical
fixed points (t�, �v�), finite size crossover effects associ-
ated with tm, ts could obscure the behavior.
We thank Anton Akhmerov, Jens Bardarson, and Ady

Stern for interesting discussions. C. L. K. was supported by
NSF Grant No. DMR 0906175 and by a Simons
Investigator Grant from the Simons Foundation. L. F. was
supported by startup funds from MIT.

[1] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[2] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801

(2005).

FIG. 2. (a) and (c) RG flow diagrams based on (12). The stable
fixed point at ðt; vÞ ¼ ð0; 0Þ is the symplectic metal (SM). The
unstable fixed points at (t�, �v�) approach the KT transition for
� ¼ 1� N � 1 and for N ! 0 are identified with the Anderson
transition. (c) includes a third fixed point at (tm), 0 along with a
fixed point at (ts), 0 describing a direct transition between TI and
I. (b) and (d) are phase diagrams corresponding to (a) and (c).

PRL 109, 246605 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

246605-4

http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.25.2185
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1103/PhysRevLett.95.226801


[4] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[5] X. L. Qi and S. C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[6] A.M.M. Pruisken, Nucl. Phys. B 235, 277 (1984).
[7] P. Fendley, Phys. Rev. B 63, 104429 (2001).
[8] P.M. Ostrovsky, I. V. Gornyi, and A.D. Mirlin, Phys. Rev.

Lett. 98, 256801 (2007).
[9] S. Ryu, C. Mudry, H. Obuse, and A. Furusaki, Phys. Rev.

Lett. 99, 116601 (2007).
[10] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[11] E. Abrahams, P.W. Anderson, D. C. Licciardello, and T. V.

Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979).
[12] F. J. Wegner, Z. Phys. B 35, 207 (1979).
[13] K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh.

Eksp. Teor. Fiz. 79, 1120 (1980) [Sov. Phys. JETP 52,
568 (1980)].

[14] S. Hikami, Phys. Rev. B 24, 2671 (1981).
[15] M. Onoda, Y. Avishai, and N. Nagaosa, Phys. Rev. Lett.

98, 076802 (2007)
[16] H. Obuse, A. Furusaki, S. Ryu, and C. Mudry, Phys. Rev.

B 76, 075301 (2007).
[17] P.M. Ostrovsky, I. V. Gornyi, and A.D. Mirlin, Phys. Rev.

Lett. 105, 036803 (2010).
[18] Z. Ringel, Y. E. Kraus, and A. Stern, Phys. Rev. B 86,

045102 (2012).
[19] R. S. K. Mong, J. H. Bardarson, and J. E. Moore, Phys.

Rev. Lett. 108, 076804 (2012).
[20] C. X. Liu, X. L. Qi, and S. C. Zhang, Physica (Amsterdam)

44, 906 (2012).

[21] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).
[22] T.H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu,

Nat. Commun. 3, 982 (2012).
[23] The role of vortices has recently been discussed in chiral

symmetry classes by E. J. König, P.M. Ostrovsky, I. V.
Protopopov, and A.D. Mirlin, Phys. Rev. B 85, 195130
(2012). Z2 vortices in class AII were also mentioned.

[24] J.M.Kosterlitz andD. J. Thouless, J. Phys. C 6, 1181 (1973).
[25] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[26] A similar phenomena was discussed in the context of

graphene in Ref. [8].
[27] E. Brezin, S. Hikami, and J. Zinn-Justin, Nucl. Phys.

B165, 528 (1980).
[28] F. J. Wegner, Nucl. Phys. B316, 663 (1989).
[29] Our normalization of t in (3) and (4) is chosen to be

consistent with �ðtÞ in Refs. [14,27,28]. In Ref. [13], t
differs by a factor of 32� and is rescaled by 2� in �ðtÞ. N
differs by a factor of 2. The relation between t and � is
fixed by comparing (4) with the weak antilocalization
correction to �.

[30] B. A. Bernevig, T. A. Hughes, and S. C. Zhang, Science
314, 1757 (2006).

[31] P. E. Lammert, D. S. Rokhsar, and J. Toner, Phys. Rev. E
52, 1778 (1995).

[32] S. Hikami, J. Phys. Lett. 46, 719 (1985).
[33] Y. Asada, K. Slevin, and T. Ohtsuki, Phys. Rev. Lett. 89,

256601 (2002).
[34] P. Markos and L. Schweitzer, J. Phys. A 39, 3221 (2006).
[35] E. P. L. van Nieuwenburg, J.M. Edge, J. P. Dahlhaus, J.

Tworzydlo, and C.W. J. Beenakker, Phys. Rev. B 85,
165131 (2012).

PRL 109, 246605 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

246605-5

http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.82.3045
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1103/RevModPhys.83.1057
http://dx.doi.org/10.1016/0550-3213(84)90101-9
http://dx.doi.org/10.1103/PhysRevB.63.104429
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.98.256801
http://dx.doi.org/10.1103/PhysRevLett.99.116601
http://dx.doi.org/10.1103/PhysRevLett.99.116601
http://dx.doi.org/10.1103/PhysRevB.78.195125
http://dx.doi.org/10.1103/PhysRevLett.42.673
http://dx.doi.org/10.1007/BF01319839
http://dx.doi.org/10.1103/PhysRevB.24.2671
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevLett.98.076802
http://dx.doi.org/10.1103/PhysRevB.76.075301
http://dx.doi.org/10.1103/PhysRevB.76.075301
http://dx.doi.org/10.1103/PhysRevLett.105.036803
http://dx.doi.org/10.1103/PhysRevLett.105.036803
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevB.86.045102
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1103/PhysRevLett.108.076804
http://dx.doi.org/10.1016/j.physe.2011.11.005
http://dx.doi.org/10.1016/j.physe.2011.11.005
http://dx.doi.org/10.1103/PhysRevLett.106.106802
http://dx.doi.org/10.1038/ncomms1969
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1103/PhysRevB.85.195130
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevB.76.045302
http://dx.doi.org/10.1016/0550-3213(80)90047-4
http://dx.doi.org/10.1016/0550-3213(80)90047-4
http://dx.doi.org/10.1016/0550-3213(89)90063-1
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1103/PhysRevE.52.1778
http://dx.doi.org/10.1103/PhysRevE.52.1778
http://dx.doi.org/10.1051/jphyslet:019850046016071900
http://dx.doi.org/10.1103/PhysRevLett.89.256601
http://dx.doi.org/10.1103/PhysRevLett.89.256601
http://dx.doi.org/10.1088/0305-4470/39/13/003
http://dx.doi.org/10.1103/PhysRevB.85.165131
http://dx.doi.org/10.1103/PhysRevB.85.165131

