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We present a determinant quantumMonte Carlo study of the competition between instantaneous on-site

Coulomb repulsion and retarded phonon-mediated attraction between electrons, as described by the

two-dimensional Hubbard-Holstein model. At half filling, we find a strong competition between

antiferromagnetism (AFM) and charge-density-wave (CDW) order. We demonstrate that a simple picture

of AFM-CDW competition that incorporates the phonon-mediated attraction into an effective-U Hubbard

model requires significant refinement. Specifically, retardation effects slow the onset of charge order so

that CDW order remains absent even when the effective U is negative. This delay opens a window where

neither AFM nor CDW order is well established and where there are signatures of a possible metallic

phase.
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The electron-phonon (e-ph) interaction is responsible
for many phenomena in condensed-matter physics, includ-
ing charge-density waves (CDWs) and conventional super-
conductivity. While the e-ph interaction is well understood
in metals, the role of phonons in strongly correlated sys-
tems is less clear, in part because the interplay of strong
electron-electron (e-e) and e-ph interactions can lead to
competing ordered phases. Despite its difficulty, this is an
important problem to solve because multiple experimental
probes have detected signatures of significant lattice ef-
fects in strongly correlated materials. For example, in the
cuprate high-temperature superconductors, angle-resolved
photoemission spectroscopy has observed ‘‘kinks’’ in the
band dispersion, which have been attributed to the e-ph
interaction [1], as well as small polaron formation in
undoped Ca2�xNaxCuOCl2 [2,3]. Additional evidence for
a significant e-ph interaction includes strong quasiparticle
renormalizations detected by STM [4] and studies that
have qualitatively reproduced optical conductivity peaks
by including phonons [5,6]. Besides the cuprates, other
materials with both strong e-e and e-ph interactions
include the manganites [7] and fullerenes [8].

On general grounds, two effects are expected when e-ph
interactions are included in a system with strong e-e
repulsion. The first is that the two interactions renormalize
each other. The phonons mediate a retarded attractive e-e
interaction, thus reducing the effective Coulomb repulsion,
while the e-e repulsion suppresses charge fluctuations and,
hence, the e-ph interaction, which couples to them. The

second effect is a reduction in the quasiparticle weight due
to additional scattering processes, which at large e-ph
couplings can lead to a polaron crossover.
A natural model for studying the interplay of the e-e and

e-ph interactions is the Hubbard-Holstein (HH) model,
which has been studied using various numerical approaches
producing sometimes contradictory results.Within dynami-
cal mean field theory (DMFT), the suppression of the e-ph
interaction depends on the underlying phase, and antiferro-
magnetic (AFM)-DMFT has found a moderate increase in
the critical e-ph coupling for small polaron formation
[9,10]. In contrast, diagrammatic quantum Monte Carlo
work on the t-J-Holstein model found a reduction in the
critical e-ph coupling needed for small polaron crossover
[11]. Dynamical cluster approximation studies investigated
the effect of phonons on the superconducting Tc and found
that phonons suppress Tc at small doping levels [12]; how-
ever, including longer range hopping terms in the presence
of phonons enhanced Tc [13].
In addition to renormalization effects arising from the

interplay of the e-e and e-ph interactions, competition
between ordered phases can occur. On a two-dimensional
square lattice, at half filling the Hubbard and Holstein
models have instabilities towards (�=a, �=a) AFM and
CDWorders, respectively; these phases compete in the HH
model. Due to the many-body nature of the problem,
compounded by the many degrees of freedom in the HH
model, in general there is no exact solution. In one dimen-
sion, the HH phase diagram has been established via
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several numerical approaches, with an intermediate metal-
lic state between the AFM and CDW phases [14–18]. The
size of the metallic region grows with increasing phonon
frequency [15–17]. A similar competition between AFM
and CDW orders and phase diagram has been mapped
out in infinite dimensions with DMFT [19–23]. The
AFM-CDW competition in two dimensions also has been
studied with perturbative [24,25] as well as strong coupling
[26] techniques.

In this Letter, we present a determinant quantum
Monte Carlo (DQMC) study of the two-dimensional
single-band HH model at half filling. DQMC is a numeri-
cally exact method that treats e-e and e-ph interactions on
an equal footing and nonperturbatively. A nonzero e-ph
coupling introduces the fermion sign problem at half filling
[27]. Nevertheless, simulations for all parameter ranges
presented in this work can be done down to T ¼ W=40,
where W is the noninteracting bandwidth. Significantly
lower temperatures can be reached in some regimes. For
details of the DQMCmethod, please refer to Refs. [28–30].

The Hamiltonian for the single-band HH model is H ¼
Hkin þHlat þHint, where
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Here, h. . .i denotes a sumover nearest neighbors, cyi� creates
an electronwith spin� at site i, n̂i� ¼ cyi�ci�, t is the nearest
neighbor hopping,� is the phonon frequency, U is the e-e
interaction strength,g is the e-ph interaction strength, and�
is the chemical potential, which is adjusted to maintain half
filling. The dimensionless electron-phonon coupling con-
stant is defined as � ¼ g2=M�2W. Throughout, we take
t ¼ 1,M ¼ 1, and a ¼ 1 as our units of energy, mass, and
length, respectively.

We first study the spin and charge susceptibilities �s and
�c, which are given by

�s;cðqÞ ¼ 1

N

Z �

0
d�hT�Ôs;cðq; �ÞÔy

s;cðq; 0Þi; (2)

where ÔsðqÞ ¼
P

ie
iq�Riðn̂i" � n̂i#Þ, and ÔcðqÞ ¼

P
ie

iq�Ri

ðn̂i" þ n̂i#Þ.
The susceptibilities at wave vector q ¼ ð�;�Þ are

shown in Fig. 1 for several values of U. With increasing
�, �s decreases, signaling that the e-ph interaction reduces
the strength of the effective e-e repulsion. This decrease in
�s occurs immediately with the inclusion of nonzero � for
low to intermediate U, whereas for large U, suppression of
�s does not occur until the e-ph coupling is fairly strong
(� ¼ 0:5 for U ¼ 8t and � > 1 for U ¼ 10t). As �s

shrinks, �c increases, indicating a clear competition

between the spin and charge orders. For all values of U
considered here, �c is negligible up to a U-dependent
critical �, at which point it grows rapidly. However, for
strong e-e interactions (U ¼ 8t, 10t), �c is still relatively
small even at � ¼ 1, due to the strong tendency toward
AFM still present. Interestingly, rather than continuously
growing with �, the CDW susceptibility peaks and then
decreases, for U ¼ 2t–6t. We attribute this behavior to
the finite CDW transition temperature in the HH model,
which will be discussed in more detail below. The inset in
Fig. 1(b) shows �s and �c for U ¼ 4t for several lattice
sizes, demonstrating that the lattice size has little effect on
our conclusions.
Since one of the effects of e-ph coupling is to reduce the

effective strength of U, we investigate how well a Ueff

Hubbard model can describe the physics of the HH model.
Integrating out the phonon field in the HH model yields a
dynamic e-e interaction

Ueffð!Þ ¼ U� g2

Mð�2 �!2Þ : (3)

In the antiadiabatic limit (� ! 1), this interaction
becomes instantaneous and reduces to the form Ueff ¼
U� �W. A frequency-independent Ueff Hubbard model
is often used to describe the HH model, even at finite �.
For example, DMFT studies have found that such an
approach captures the low-energy physics of the HHmodel
[9,22].
Figure 2 compares the spin and charge structure factors

Ss;cðqÞ ¼ hÔs;cðqÞÔy
s;cðqÞi at q ¼ ð�;�Þ of a frequency-

independent Ueff Hubbard model and the U ¼ 8t HH
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FIG. 1 (color). (a) �sð�;�Þ and (b) �cð�;�Þ for several U
values on an N ¼ 8� 8 lattice. Inset of (b) shows �s (dashed
lines) and �c (solid lines) at U ¼ 4t for several lattice sizes. The
error bars in the inset are suppressed for clarity. The remaining
simulation parameters are � ¼ 4=t, �� ¼ 0:1=t, � ¼ t.
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model at several phonon frequencies. Up to � � 0:25,
Ssð�;�Þ in the Ueff and HH models agrees for all �
considered. Beyond this point, Ssð�;�Þ is suppressed
more slowly in the HH model than in the Ueff model, due
to the retarded nature of the e-ph interaction captured in
HH. As� increases, the HH result comes closer to theUeff

result, until by � ¼ 4t, the two models agree within the
error bars. We also considered other values of U (not
shown) and found that for a given � the difference
between the HH and Ueff results grows as U increases. In
contrast to Ssð�;�Þ, Scð�;�Þ calculated in theUeff and HH
models does not agree for any �. Rather, Scð�;�Þ imme-
diately rises in the Ueff model, whereas in the HH model it
remains small until � � 0:75 and then rises sharply. As the
phonon frequency increases, the HH and Ueff results get
closer, although they are still inconsistent at � ¼ 4t. This
result is generic; while theUeff Hubbard model has a CDW
phase for any Ueff that is negative, �c remains suppressed
well beyond the � value at which Ueff ¼ 0, as is clear in
Fig. 1(b) where Ueff ¼ 0 at � ¼ 0:25, 0.5, and 0.75 for
U ¼ 2t, 4t, and 6t, respectively.

An additional difference between the HH and Ueff mod-
els is the CDW transition temperature. In the HH model,
while TAFM ¼ 0 in two dimensions due to the Mermin-
Wagner theorem, TCDW is finite because the order parame-
ter has two states. DQMC finite size scaling studies [31,32]
of the Holstein model found that t�CDW ¼ 8–11 for� ¼ t
and � ¼ 0:25. While we did not perform a scaling analysis
for the HH model, we expect TCDW to be in the same
temperature regime, because while the inclusion of U in
the HH model localizes carriers (which would lower
TCDW), it also pushes the CDW transition to a larger �
(which would increase TCDW). In contrast, TCDW ¼ 0 in the
attractive-U Hubbard model. The sharply peaked nature of
�c in Fig. 1(b), differing from the slow evolution of �s,
may be due to the proximity of the temperature t� ¼ 4 to
TCDW.

We now turn to the spectral properties of the HH model.
To avoid analytic continuation, we focus on the spectral
weight near the Fermi level, which is obtained from the
imaginary time propagator via the relation [33]

�Cðk; � ¼ �=2Þ ¼ �

2

Z
d!Aðk; !Þgð!;�Þ; (4)

where C and A are the propagator and spectral function,
respectively, and gð!;�Þ ¼ != sinhð�!=2Þ for bosons
and ¼ 1= coshð�!=2Þ for fermions. At low temperature,
gð!;�Þ is sharply peaked about ! ¼ 0, so that Aðk; ! ¼
0Þ dominates the integral. We consider the local propagator
Cðr ¼ 0Þ ¼ P

kCðkÞ, which is related to the low-energy
projected density of states via Nð0Þ � �Cðr ¼ 0;
� ¼ �=2Þ=�.
The phonon propagator, defined as Dijð�Þ ¼

hT�X̂ið�ÞX̂jð0Þi � hXi2, contains information on phonon

softening at the CDW transition. In the Holstein model,
the phonon spectral function is peaked at the bare phonon
frequency �� in a system without e-ph coupling; e-ph
interactions renormalize the phonon frequency and lead to
spectral weight at other frequencies. In particular, the
appearance of spectral weight at ! ¼ 0 indicates the
development of a static CDW lattice distortion, which is
revealed by �Dðr ¼ 0; � ¼ �=2Þ (abbreviated as �D�=2),

as shown in Fig. 3. For low e-ph coupling, �D�=2 is

negligible, since the system is far from the CDW state. It
then increases at the same U-dependent � at which �c

rapidly increases in Fig. 1(b). This phonon softening indi-
cates that the CDW formation may have a Peierls-like
origin, in which case the Fermi surface could be restored
during the transition from an AFM to a CDW insulator.
Figure 3(b) shows �c at U ¼ 2t for several lower tempera-
tures. With decreasing temperature, the rise in �c sharpens
dramatically and also shifts to lower �, appearing to
asymptote towards a divergence in the susceptibility at
low temperature around � ¼ 0:3. We also note that the
peak and subsequent decay in the CDW susceptibility
discussed earlier appears robustly as a function of
temperature.
The electronic spectral weight near ! ¼ 0 also offers

insight into the AFM-CDW transition. In this case,
�Gðr ¼ 0; � ¼ �=2Þ (abbreviated as �G�=2) distinguishes

between insulating and metallic systems, being 0 in the
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low-temperature limit when a gap is present and finite if a
band disperses through the Fermi level. Figure 4(a) shows
�G�=2 for several values of U. For small � values, �G�=2

decreases with increasing U, indicating the opening of the
Mott gap. As a function of increasing �, �G�=2 falls for

U ¼ 2t as the CDW gap develops. For U ¼ 4t and 6t,
�G�=2 initially grows as the e-ph interaction reduces the

effective e-e repulsion and the Mott gap closes and then
decreases quickly as the CDW gap opens. For all these U
values, �G�=2 begins to fall at the same � at which �c

increases in Fig. 1(b) and the phonon softens in Fig. 3(a).
For U ¼ 8t and 10t, �G�=2 grows slowly with � as the

Mott gap narrows.

What can the peak in�G�=2 at intermediate � in Fig. 4(a)

tell us about the AFM-CDW transition? In Fig. 4(b), we plot

�G�=2 at U ¼ 5t for several temperatures. As the tempera-

ture is lowered, �G�=2 decreases at small and large � as

the Mott and CDW gaps open, respectively. However, at

intermediate e-ph coupling, �G�=2 actually grows with

decreasing temperature, behavior that could arise from an

intervening metallic phase between theMott and CDW insu-

lating states. This increase in spectral weight at intermediate

�was observed robustly for several lattice sizes and values of

U. In addition, the possible implication of a Fermi surface in

the intermediate state, from the phonon softening in Fig. 3(a),

further supports the idea of an intermediate metallic phase.
To further explore signatures of this possible metallic

state, we plot the average double occupancy hn"n#i in

Fig. 4(c). The double occupancy distinguishes between
(�, �) AFM and CDW insulators, where it is 0 and 0.5,
respectively. In a metallic state (or an AFM-CDW coex-
istence state), hn"n#i ¼ 0:25. We find that hn"n#i increases
smoothly with energy through 0.25, which is consistent
with an intermediate metallic state, rather than a direct
AFM-CDW transition at a critical � value, where a sharp
jump would be expected. While the transition from low to
high double occupancy may sharpen as temperature is
lowered, we note that in the range t� ¼ 2–5, we found
much less temperature dependence in hn"n#i than in other

quantities considered in this Letter.
A finite temperature U� � phase diagram for � ¼ 4=t,

depicting the difference of the charge and spin order pa-
rameters, �c ��s, is shown in Fig. 4(d). Here, the order
parameters are defined as �s ¼

P
iðn̂i" � n̂i#Þ2=N and

�c ¼ P
i�ðn̂i� � 1Þ2=N. Lines denoting Ueff ¼ 0,

hn"n#i ¼ 0:25, and the peak in �G�=2 are also included.

The dominance of AFM and CDWorders at large U and �
values, respectively, is apparent. However, a sizable tran-
sition region, where �c ��s � 0, is clearly visible. The
lines Ueff ¼ 0 and hn"n#i ¼ 0:25 lie in the center of

the transition region, while the peak in �G�=2 is toward

the side dominated by spin order. The coincidence of
multiple quantities consistent with a metallic state in the
intermediate region of the phase diagram corroborates the
case for the existence of such a phase.
To summarize, in this work we demonstrated a strong

competition between AFM and CDW phases in the
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two-dimensional single band HH model and found evi-
dence for a possible intermediate metallic regime existing
between the ordered phases. We investigated how well an
effective-U Hubbard model can describe the physics of the
HH model and found that while in some regimes the two
models give comparable results, in general the retarded
nature of the e-ph interaction leads to significant differ-
ences. The U� � phase diagram determined in our study
is qualitatively similar to that found by low-temperature
numerical approaches, with the Ueff ¼ 0 line dividing the
regions of dominant spin and charge order parameters. We
found evidence for an intermediate metallic phase in two
dimensions, similar to that of previous 1D results [14–17].
The size of the intermediate metallic region shrinks as the
interaction strengths grow, which is consistent with
Refs. [15–17], where the metallic phase is found to termi-
nate at strong couplings. These findings contrast with the
infinite dimensional DMFT results of Refs. [22,23], where
a direct order-to-order transition was found. Potential
explorations for future work include studying the effect
of phonon frequency on the intermediate metallic state and
understanding more precisely where the metal-insulator
transitions lie.
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