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It is shown that the sign of the product of three Zeeman splitting factors corresponding to the main

magnetic axes defines the sign of the Berry phase of a (pseudo) spin in an applied magneic field. Ab initio

calculations show that gXgYgZ < 0 is often the case for lanthanide and transition metal complexes, while

we prove that it is never achieved in S complexes with dominant second-order magnetic anisotropy. In the

case of polynuclear compounds, it is argued that the signs of individual gi, i ¼ X, Y, Z, on each metal site

can be extracted from experiment.
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The effects of magnetic anisotropy in metal complexes
and adatoms have been the object of intensive investiga-
tions in the last decade [1,2] in view of their potential
applications in storage and information processing tech-
nologies [3–9]. These effects arise due to the interplay of
the spin-orbit coupling on the metal sites and the crystal
(ligand) field from surrounding atoms [10]. One of the
effects produced by these joint interactions is the change
of sign of the Zeeman spliting factors (g factors) in some
complexes. While at a first glance the signs of the g factors
seem to be unimportant, Pryce has shown [11] that the sign
of the product of the three main components of the g
tensor, gXgYgZ, determines the direction of precession
of the magnetic moment around the applied field. The
latter can be probed directly in resonance experiments
with circularly polarized radiation (Sec. 2, Ch. III, in
Ref. [10]). This was first demonstrated for NpF6 by using
circularly polarized light [12], where it was found that
gXgYgZ < 0. The sign of this product was also deduced
relative to the sign of the hyperfine coupling [11], in which
way it was found negative for PaCl2�6 [13]. Later, a nega-

tive product of gi factors was found for UF�6 in different

environments by using circularly polarized EPR [14].
Despite experimental proof of its manifestation [11–14]

and the demonstration of the possibility of its unequivocal
determination from ab initio calculations [15], the sign of
the g factors receives yet little attention. However, a recent
investigation of magnetism of a Co5 complex [16] has
required the assumption of negative g factors on some
Co2þ ions. This example, which will undoubtedly be fol-
lowed by many others, prompts for a deeper understanding
of the origin of negative g factors and their implications for
magnetic properties of complexes. These questions are
addressed in the present Letter.

Consider a metal complex or a single-metal fragment
with arbitrary spin-orbit coupling. In a general case of
low-symmetric complexes, no angular momentum is con-
served, so an arbitrary multiplet involving N states is

described by a fictive spin (pseudospin) ~S whose value is

chosen from 2~Sþ 1 ¼ N. The simplest relation between
the components of magnetic moment in a given multiplet,
f��g, and the components of the pseudospin operators,

f~S�g [17], is linear and can always be brought to a diagonal
form:

�i ¼ ��Bgi ~Si; (1)

in a coordinate system coinciding with the main magnetic

axes, i ¼ X, Y, Z [10]. The multiplet ~S interacts with an
applied magnetic field B ¼ fBX; BY; BZg via the Zeeman
Hamiltonian:

HZee ¼ �X
i

�iBi; (2)

which leads, in particular, to the precession of the magnetic
moment around the applied field in the direction defined by
the sign of the product gXgYgZ [11].
While the equactions of motion for �i involve the

product of three g factors, it is interesting to see whether
it is also the case for the Berry’s phase accumulated along
a given closed path in the parameter (B) space. The
Hamiltonian (2) is diagonalized by passing to a quantiza-
tion axis z0 with the coordinates

hijz0i ¼ gi�i
gB

; i ¼ X; Y; Z;

gB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2X�

2
X þ g2Y�

2
Y þ g2Z�

2
Z

q
;

(3)

where f�ig are directional cosines of B. The eigenfunctions
j~SMi of (2) are characterized by a definite projection of
pseudospin on the z0 axis, i.e., are eigenfunctions of the

pseudospin operator ~Sz0 ¼ P
ihijz0i~Si. The corresponding

eigenvalues are given by [10]

EM ¼ �BgBMB; (4)

where B ¼ jBj. The phase change �MðCÞ of an eigenstate

j~SMi, when the vector of applied field B is varied over a
closed path C, is calculated as
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�MðCÞ ¼ �MgXgYgZ �
ZZ

C

d�

ðg2Zcos2�þ g2Xsin
2�cos2�þ g2Ysin

2�sin2�Þ3=2 ; (5)

where �, � are spherical angles in the XYZ coordinate
system with the origin at the degeneracy point (B ¼ 0) and
d� is the element of a solid angle measured from this
origin. In the case jgij ¼ g, Eq. (5) reduces to

�MðCÞ ¼ �signfgXgYgZgM�ðCÞ; (6)

where �ðCÞ is the solid angle that contour C subtends at
B ¼ 0. Equation (6) differs from the corresponding
Berry’s expression for an isotropic spin [18] only by
the sign factor signfgXgYgZg. In the case of arbitrary

gi, the Berry’s phase, Eq. (5), will not be simply pro-
portional to the solid angle �ðCÞ; however, its sign will
always be determined by the sign of the product gXgYgZ.
Given the physical meaning of signfgXgYgZg, one

might expect that it should be determined via measurable
quantities. Indeed, taking the commutation of the matri-
ces of magnetic moments �X and �Z given by Eq. (1)
and having in mind that the pseudospin matrices com-
mute similarly to the ordinary spin matrices [17],
we obtain

gXgZ
gY

¼ � i

�B

�X�Z ��Z�X

�Y

¼ � i

�B

P
lðh�nj�̂Xj�lih�lj�̂Zj�mi � h�nj�̂Zj�lih�lj�̂Xj�miÞ

h�nj�̂Yj�mi : (7)

The sign of this expression coincides with the sign of
gXgYgZ, while it is written only via the matrix elements
of magnetic moments on the wave functions characterizing
a given multiplet ~S. The second equality means that it is
sufficient to consider one single matrix element on any two
wave functions �n and �m which give h�nj�̂Yj�mi � 0.
We stress that the above equation is invariant with respect
to unitary transformations of the basis set of functions
characterizing a given multiplet, so the wave functions
entering Eq. (7) are arbitrary combinations of this basis
set. The only requirement in (7) is the knowledge of the
main magnetic axes, with respect to which the magnetic
moments are defined. Their theoretical determination rep-
resents a separate tractable problem [19].

The negative sign of the product gXgYgZ means that
either one single or all three gi factors in Eq. (1) are
negative. To understand how this can happen, consider a
simple example of a cubic �6 Kramers doublet arising from
crystal-field splitting of a multiplet J ¼ 7=2 (this is, for
instance, the ground state of Yb3þ in an octahedral envi-
ronment). The two wave functions of the Kramers doublet
can be chosen to transform under cubic rotations like
eigenfunctions of a spin S ¼ 1=2 corresponding to projec-
tionsMS ¼ 1=2 and�1=2, respectively. For a quantization
axis chosen along one of the tetragonal axes (Z), these are
expressed via the eigenfunctions of J ¼ 7=2 as follows:���������6;

1

2

�
¼ 1ffiffiffiffiffiffi

12
p

� ffiffiffi
7

p ��������
7

2
;
1

2

�
þ ffiffiffi

5
p ��������

7

2
;
�7

2

��
;

���������6;� 1

2

�
¼ �

���������6;
1

2

�
;

(8)

where �̂ is the time reversal operator [10]. The magnetic
moment in the 1=2 state is h�6; 1=2j�Zj�6; 1=2i ¼
ð7=6ÞgJ�B. Taking into account that gJ > 0 [20], we
obtain from Eq. (1) gZ ¼ �7=3gJ < 0. Due to the cubic
symmetry, the same values are obtained also for gX and gY ;

hence, gXgYgZ < 0. The reason for the positive magnetic
moment in the 1=2 state (for a true S ¼ 1=2, this is always
negative) is the large contribution of the j7=2;�7=2i state
[see Eq. (8)], with a large projection of the total momentum
(� 7=2) pointing in the opposite direction to the pseudo-
spin projection in the state j�6; 1=2i. A similar analysis of
the sign of gi in low-symmetry complexes requires the
identification of pseudospin wave functions as a prelimi-
nary step [15,19].
Equation (7) allows for a straightforward calculation of

the sign of gXgYgZ for arbitrary complexes by quantum
chemistry methods. Below, we demonstrate that this sign
can be negative in complexes of different type. The calcu-
lations have been done by the first-principles relativistic
spin-orbit complete active space self-consistent field
method [21] with an all-electron basis sets of quadruple-
and triple-zeta polarization quality on the metals and triple-
and double-zeta polarization quality on ligand atoms [22].
The ab initio based methodology for the description of
magnetic properties has been described elsewhere [19,23].
In spite of previous experience that negative gXgYgZ is
achieved in complexes with high symmetry (mostly octa-
hedral) [10,12–15], we also find the same negative sign in
metal complexes without any symmetry. For example,
Fig. 1 shows the structure of a mononuclear Er3þ complex
[24] for which the calculations give gXgYgZ < 0 in the
ground Kramers doublet. A similar situation was found in
several other lanthanide fragments which were found in a
low-symmetry environment [25,26].
Equation (8) shows that the necessary condition for

gXgYgZ < 0 is the appreciable mixture of wave functions
with opposite projections of angular momentum. Given
this condition, the nature of the angular momentum char-
acterizing the multiplet is not important. For instance, the
zero-field splitting (ZFS) of a true spin S ¼ 7=2 in an
octahedral field would yield the same Eq. (8) for the
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wave functions of the �6 multiplet (in terms of jS;MSi) and
the same expressions for gi [27]. Note that this is the cubic
ZFS effect, which arises in the fourth order of perturbation
after spin-orbit coupling. Although this effect is present in
spin complexes, it is rather weak [10], and we wonder
whether gXgYgZ < 0 could not be achieved for true spin
Kramers doublets arising frommuch stronger second-order
anisotropy effects on S. In the coordinate system related to
the main anisotropy axes, this ZFS Hamiltonian has the
form [10]

HZFS ¼ D

�
S2z � 1

3
SðSþ 1Þ

�
þ EðS2x � S2yÞ: (9)

Diagonalizing (9) for different odd values of S and using
Eq. (7), we calculate gXgZ=gY for all possible values of
E=D. The results are shown in Fig. 2 for S ¼ 3=2, 5=2, and
7=2. One can observe that in all cases the sign of gXgYgZ is
obtained positive. The same situation is kept for higher
spins. We may conclude, therefore, that negative values of
the product gXgYgZ in S complexes can only be realized
when fourth- and higher-order spin-orbit coupling effects
become dominant. This regime is characterized by
unquenched orbital momenta. Hence, their presence in
complexes represents a necessary condition to achieve
gXgZ=gY < 0. As a matter of fact, the magnetic moments
in lanthanides always contain a significant contribution of
the orbital moment.

Unquenched orbital moments are also encountered in
transition metal complexes. A typical metal ion is Co2þ,
for which we can also expect negative values of gXgZ=gY .
The octahedral crystal field leads to the lowest spin-orbit

multiplets characterized by total pseudomomentum ~J aris-
ing from the coupling of S ¼ 3=2 with the pseudo-orbital
momentum ~L ¼ 1 corresponding to the threefold orbital
degeneracy of the ground molecular term. Figure 3(a)

FIG. 2 (color online). The values of gXgZ=gY for individual
Kramers doublets arising from the zero-field splitting of S ¼ 3=2
(dotted blue line), S ¼ 5=2 (dashed green line), and S ¼ 7=2
(solid red line) in the weak spin-orbit coupling limit.

FIG. 3 (color online). (a) Energies and (b) gXgZ=gY values of
the lowest six Kramers doublets in CoCl4�6 as a function of

tetragonal elongation or compression of two Co-Cl bonds
along one axis. The octahedral geometry corresponds to
RCu-Cl ¼ 2:60 �A.

FIG. 1 (color online). The structure of the Er3þ complex [24]
showing gXgYgZ < 0 in the ground state.
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shows that CoCl4�6 in octahedral coordination has

indeed a Lande-type spectrum of the lowest multiplets
corresponding to ~J ¼ 1=2, 3=2, and 5=2 (split by
�200 cm�1). The calculated sign of gXgYgZ is positive
for each of the three ~J multiplets. However, a tetragonal
elongation or compression of this complex splits the ~J ¼
3=2 and 5=2 multiplets into Kramers doublets, some of
which show a negative value of gXgZ=gY [Fig. 3(b)].
The same situation takes place in the opposite limit
of a strongly covalent complex CoðCNÞ4�6 (see the

Supplemental Material [28]).
Surprisingly enough, negative gXgZ=gY are found in the

complexes of Cu2þ, for which no strong spin-orbit cou-
pling effects are usually expected. Figure 4 shows the
results for the archetypal compound CuCl2�4 as a function

of the deformations transforming its planar geometry into a
tetrahedral-like one. We can see that close to the tetrahe-
dral geometry the sign of gXgYgZ becomes negative. This
is again related to the presence of unquenched orbital
momentum close to the tetrahedral point, at which the
orbital term becomes threefold degenerate. In a tetrahedral
geometry, the g tensor is isotropic, i.e., has similar main
values, all equal to �1:80, according to our calculations.
Curiously, the EPR of CuCl2�4 with different deviations

from Td symmetry was investigated many times but small
deviations of extracted gi from the free spin value have
never made them ‘‘suspicious.’’ These are the negative
values of gi that testify about strong spin-orbit coupling
effects in this complex.

The derived Berry phase (5) and the previous investiga-
tions [10–14] indicate that the sign of the product of
the main values of the g tensor has a physical meaning.
At the same time, it is clear from the example in Eq. (8)
that in the isotropic case the signs of all three main com-
ponents are easily defined, and it was proved that this is
also possible in a general case [15]. Here, we observe that
the signs of individual gi, i ¼ X, Y, Z, of metal ions can be

also extracted from the magnetism of exchange-coupled
clusters. Indeed, the dc magnetization and susceptibility of
any complexes are completely defined by the Zeeman
splitting of its multiplets. In the case of individual (non-
interacting) metal sites, this splitting is independent from
the signs of the three gi components [see Eq. (3) for gB].
The same is true for the magnetic ions with Ising exchange
interaction having main anisotropy axes parallel to each
other and to the applied magnetic field. In all other cases,
the Zeeman splitting of the multiplets will be dependent
on the relative signs of gi of entering metal ions. Consider
a model of two metal ions with isotropic exchange
(� JS1 � S2) and Zeeman interactions. In the case of g
factors of the same sign on both metal sites, we have a
normal Zeeman splitting [Fig. 5(a)], while in the case of g
factors of opposite sign the Zeeman splitting is absent for
weak B [Fig. 5(b)]. Generalizing, we can state that, for
known parameters of exchange interaction between two
metal ions, the relative signs of their gi can be extracted by
measuring static magnetic properties for different direc-
tions of the applied field.
In conclusion, we have shown that the sign of gXgYgZ

plays the role of a topological invariant because it is just

the sign of the Berry phase for a given ~S. Accordingly, this
sign can be calculated by using only measurable quantities
[Eq. (7)]. Ab initio calculations reveal the ubiquity of the
situation gXgYgZ < 0 in both lanthanide and transition
metal complexes. However, it is never achieved in S com-
plexes with predominant second-order magnetic anisot-
ropy, a most often encountered situation. Finally, it is
argued that the signs of individual gi components can be
measured in polynuclear complexes.
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FIG. 4 (color online). Variations of gXgZ=gY for the ground
Kramers doublet of CuCl2�4 as a function of two deformation

modes of the ligand environment.
FIG. 5. Zeeman splitting of the exchange multiplets of a model
binuclear system with (a) the same and (b) opposite signs of the
g factors on the two metal sites.
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