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Dynamical scattering of fast electrons can be inverted by recasting the multislice algorithm as an

artificial neural network, enabling the iterative retrieval of the three-dimensional object potential. This

allows a nonheuristic treatment of the modulation transfer function of the CCD, partial spatial and

temporal coherence, and inelastic scattering through an absorptive potential. Furthermore, prior knowl-

edge about the atomic potential shape and the sparseness and positivity of the object can be used. The

method is demonstrated on simulated bright field images recorded at 40 kV.
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Because of their relatively high elastic scattering cross
section, electrons provide up to four orders of magnitude
more information per amount of radiation damage than
x-rays [1]. However, the field of electron microscopy
seems to lag behind in developments like direct methods
[2] or charge flipping [3] where the crystal structure is
determined directly from x-ray measurements. The reason
for this, too, is the high scattering cross section since it
causes dynamical scattering, which is more difficult to treat
accurately. Its effects can be partially reduced by, for
example, electron beam precession diffraction [4] or high
angle annular dark field scanning transmission electron
microscopy [5]. Such methods, however, essentially rely
on losing the dynamical part of the signal, while recently it
has been shown that dynamical scattering provides extra
information that can actually help solve for the object
structure [6,7]. In this Letter, we take a further step in
that direction by providing a general framework for the
inversion of dynamical electron scattering.

The multislice (MS) formalism [8–12] describes the
propagation of fast electrons through an object, neglecting
backscattering. The object is divided in N slices normal to
the optical axis, each supporting a transmission function t.
The electron wave c reaching the slice is multiplied with t
and its propagation to the next slice is described by a
convolution with the Fresnel propagator p,

c jþ1 ¼ p � ðc jtjÞ; tj ¼ ei�V
j
: (1)

The superscript j denotes the slice number, � a convolu-
tion, � the interaction constant, and Vj the projected
potential within the slice [13]. In the limit of very thin
slices this deceptively simple formalism becomes equiva-
lent to a Bloch wave calculation [9] and accounts for
dynamical effects such as channeling along the atom col-
umns [14] and forbidden reflections in the diffraction
pattern. The objective lens either brings the exit wave
c Nþ1 to the image plane or to the diffraction plane. The
former is described as a real space convolution with the
lens function [15] and the latter as a Fourier transform [16],

in both cases the result is denoted as c Nþ2. Finally, the
phase of the wave is lost upon recording and the measure-
ment I equals the squared amplitude of c Nþ2. Since a
numerical implementation requires discretization, the

quantities are sampled on a three dimensional grid: c j
k,

pk, V
j
k, and tjk, where k denotes the position within a slice.

Equation (1) is a nonlinear system with a large amount
of unknowns, rendering direct inversion impractical and
thus prompting us to opt for an iterative solution by min-
imizing an error metric E. This is not uncommon, in related
fields—like electron tomography [17], coherent diffraction
imaging [18], and ptychography [19]—solutions often are
arrived at iteratively. These are true object estimates since
they explain the measurements if the image formation
process is applied to them. In an experimental situation,
one does not know if an absolute minimum of E has been
reached because the true object is unknown. In case of
computer simulations however, the true object is known
and can be used to verify the quality of the solution
and suggest experimental conditions that allow for good
convergence.
The error metric is defined as

E ¼ X
k

1

2
ðIk � JkÞ2; (2)

where I and J are the modelled and the measured inten-
sities, k runs over the pixels in the measurements, and the
factor of 1=2 simplifies the subsequent mathematics. The
solution to the inversion problem is the potential V that
minimizes E. In this Letter, it is sought by a gradient
descent algorithm. Numerically calculating the required
derivatives of E with respect to the elements of V would
take up a prohibitive amount of time since the whole MS
algorithm would need to be run for each entry of V.
However, this problem is evaded by recasting the algorithm
as an artificial neural network (ANN) [20].
An ANN consists of nodes representing functions, inter-

connected with edges carrying a certain weight. Each node
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accepts as its input the output of other nodes multiplied
with the weight of the interconnecting edges. This flexible
scheme allows implementation of a broad variety of
phenomena, including convolutions, Fourier transforms
and the error metric from Eq. (2). In Fig. 1 the ANN
corresponding to the current problem is given; note that
the entries of the transmission function are acting as
weights.

All derivatives of E with respect to the node inputs, i.e.,

@E=@ðc j
kt

j
kÞ, can be computed with one extra pass through

the ANN by the well-established backpropagation algo-
rithm [20]. The derivatives of interest are then written as

@E

@Vj
k

¼ @E

@c j
kt

j
k

@c j
kt

j
k

@Vj
k

þ c:c:; (3)

¼ �2=
�
c j

kt
j
k

@E

@c j
kt

j
k

�
; (4)

where c.c. denotes the complex conjugate of the previous
term and = takes the imaginary part. These derivatives
are used in a steepest descent algorithm where the
step length is computed with one iteration of the secant
method [21,22].
The current ANN is readily extended to include more

aspects of the image formation. The CCD’s modulation
transfer function (MTF) [23,24] and the partial spatial
coherence [25] (characterized by the illumination conver-
gence semi-angle �) are accounted for by an extra con-
volution after taking the intensity. The partial temporal
coherence (characterized by the focal spread �f) is mod-
eled as an extra convolution following the lens function
[26]. Small object tilts are incorporated by shifting the
wave function between slices [12]. In the case of zero-
loss filtered data acquisition, inelastic scattering may be
treated by an absorptive potential. Therefore an imaginary

part iWj
k is added to the regular potential [27], yielding

@E

@Wj
k

¼ �2<
�
c j

kt
j
k

@E

@c j
kt

j
k

�
; (5)

where < takes the real part.
In Refs. [28,29], it is shown to be highly advantageous to

incorporate prior knowledge about the shape of the poten-
tial. Note that

Vj
k þ iWj

k ¼ ½V0 � vj þ iW0 � wj�k; (6)

where V0 andW0 are the generalized regular and absorptive
potentials of individual atoms and v and w are arrays of
Dirac delta functions centred on the atom positions, with
an amplitude roughly proportional to the atomic number.

TABLE I. The simulation parameters. U is the acceleration
voltage, C1 the focus value, C3 the spherical aberration constant,
dxy the CCD pixel size, dz the slice thickness, and a, c, and d

define the MTF as a expð�ctÞ þ ð1� aÞ expð�d2t2Þ, with t the
spatial frequency in pm�1.

U C1 C3 � �f
40 kV �10 nm 14 �m 0.10 mrad 1.0 nm

dxy dz a c d
15 pm 0.21 nm 0.58 68 pm 98 pm

FIG. 1. The MS algorithm written as an ANN. The incoming
wave, c 1, is multiplied with the transmission function t1 of the
first slice, then c 1t1 is fed into the identity function (id.). The
next layer of nodes and edges realizes a real space convolution
with the propagator p, resulting in c 2. This is repeated until the
exit wave c Nþ1 is reached. The next layer encodes a real space
convolution with the lens function if in imaging mode, or a
Fourier transform if in diffraction mode, resulting in c Nþ2. The
last layers convert c Nþ2 to an intensity I and calculate the error
metric E from the measurements J.
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The error metric can then be optimized with respect to v
and w instead of V and W, by using

@E

@vj
k

¼ �2

�
=
�
@E

@Vj � V0;180�

��
k
; (7)

@E

@wj
k

¼ �2

�
<
�
@E

@Wj �W0;180�

��
k
; (8)

where V0;180� and W0;180� equal V0 and W0 rotated over

180�. Since v and w are sparse by construction, this con-
straint can be imposed by adding a term �‘1 to the error
metric E [30]. � is a user defined constant, and the so-

called ‘1-norm is the sum of the absolute values of vj
k and

wj
k. ‘1 regularization is a well-established method in the

compressed sensing community [31] to retrieve the spars-
est solution to an under-determined problem. Furthermore,
as in charge flipping (CF), positive and peaked solutions
are favored by flipping the sign of intermediate solutions
wherever they fall below a small, positive threshold, the so-
called CF threshold. In practice, charge flipping has proven
to successfully solve global, nonconvex optimization prob-
lems in x-ray analysis.

The method is tested on a simulated data set of 25 bright
field images of a cuboctahedron composed of 309 Au
atoms arranged in an fcc lattice. The simulation parameters
are listed in Table I and yield a point resolution of 0.15 nm.
Since, in practice, an exact focus is difficult to realize, each
image is taken with a random but known defocus between
�1:5 and 1.5 nm. The specimen has undergone a double
tilt of �10�, �5�, 0�, 5�, or 10� around the two axes.
Poisson noise equivalent to a dose of 100 electrons per
pixel is applied right before the MTF. The absorptive
potential W is approximated as V=5 [32]. In Fig. 2, five
typical measurements are displayed.

Although the crystal is relatively thin, the low accelera-
tion voltage causes significant dynamical effects. In Fig. 3,
a dynamical, full MS, calculation is compared to a kine-
matical simulation (obtained through the weak phase
object approximation).

The function Eþ 0:6‘1 is minimized with respect to v
and w. The CF threshold is set to 1.1 times the standard
deviation of the intermediate solution, as recommended in

Ref. [3]. V0 and W0 are taken as the projected potential of
Au, the factor of 1=5 forW0 is not used as prior knowledge.
To avoid wrap-around errors induced by the Fourier

transforms, a region twice as wide as the measurements
is reconstructed, but only the central part of the solution is
of interest and will be displayed. Since the measurements
have 320� 320� 25 pixels and the reconstructed object
640� 640� 10 voxels, the problem is under determined
and possibly has infinitely many solutions. However, due to
the object’s atomicity, the physically correct solution must
be sparse, and the ‘1-regularization does just that: restrict-
ing the solution space to sparse objects.
The object and its reconstruction are shown in Fig. 4.

The reconstruction of the regular potential is faithful, all
atoms are reconstructed on the correct positions. Note how
a finite vertical resolution causes the intensity of the atoms
to protrude in adjacent slices. In the reconstruction of the
absorptive potential, however, several atoms are missing,
most likely due to the weak overall contribution of the
absorptive signal to the noisy measurements. For the
moment, we are not interested in the absorptive signal
itself [33], but since it can account for effects not included
in a purely elastic MS simulation, its simultaneous recon-
struction can help improving the reconstruction of the
regular potential.
In this Letter, we have detailed a method to invert the

dynamical scattering by recasting the multislice algorithm
as an artificial neural network. This versatile approach can
describe both imaging and diffraction mode and allows for
a nonheuristic treatment of the modulation transfer func-
tion of the CCD, partial spatial and temporal coherence,
and inelastic scattering through an absorptive potential.
Furthermore, prior knowledge about the atomic potential

1.5 nm

FIG. 2. Five typical measurements, the tilt around the horizontal axis of these images is 0� and around the vertical axis, from left to
right, �10�, �5�, 0�, 5�, and 10�.

1.5 nm

Dynamical Kinematical

FIG. 3. Comparison between a dynamical and a kinematical
simulation. The particle is imaged at zero tilt.
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shape and the sparseness and positivity of the object can be
used. The lattice type or occupancy are not needed as prior
knowledge. The algorithm is validated with a simulation of
bright field images of a Au cuboctahedron. The potential is
reconstructed faithfully and all atoms are retrieved. The
scheme represented here is easily extended, for example by
including a phase plate [34,35] in the back focal plane, by
using a confocal setup [36] with a CCD instead of a pin-
hole detector or by replacing the current error metric by the
negative log-likelihood function [37].
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FIG. 4. Upper two rows: Slices with the projected potential of the Au particle; the gray scale is logarithmic. Middle two rows:
Reconstructed projected potential, for comparison, the solution has been convolved with V0 after intensities below the CF threshold
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