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We study the thermodynamics of a two-species Feshbach-resonant atomic Fermi gas in a periodic

potential, focusing in a deep optical potential where a tight binding model is applicable. We show that for

a more than half-filled band the gas exhibits a reentrant crossover with decreased detuning (increased

attractive interaction), from a paired BCS superfluid to a Bose-Einstein condensate (BEC) of molecules

of holes, back to the BCS superfluid, and finally to a conventional BEC of diatomic molecules. This

behavior is associated with the nonmonotonic dependence of the chemical potential on detuning and the

concomitant Cooper-pair or molecular size, larger in the BCS and smaller in the BEC regimes. For a

single filled band we find a quantum phase transition from a band insulator to a BCS-BEC superfluid, and

map out the corresponding phase diagram.
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Feshbach resonances have become an essential experi-
mental tool in the exploration of interacting degenerate
atomic gases, allowing, for a realization of Fermi super-
fluidity tunable from a weakly paired BCS to a strongly
paired molecular regime [1–6]. Confinement of atomic
gases in optical lattices is another powerful technique
for realizing and tuning strong correlations [7], allowing
experimental investigation of a variety of lattice quantum
many-body phenomena, such as the superfluid to Mott
insulator transition [8].

Naturally, recent attention has focused on the rich com-
bination of Feshbach-resonant gases in optical lattices
[9–11]. Although considerable progress has recently been
made [12–22], a general theoretical description of such
systems is challenging even at the two-body level as
it involves a projection of the Feshbach resonance physics
onto the eigenstates of the periodic potential. The optical
lattice shifts bulk Feshbach resonances and induces
new ones.

Yet it is possible to argue [23,24] that in a sufficiently
deep optical lattice, where the bandwidth is much smaller
than a band gap, even in the vicinity of a broad Feshbach
resonance (for example, see Ref. [4] for a definition), the
single band tight binding model with on-site attraction (an
attractive Hubbard model) UðaÞ, a function of a vacuum
scattering length a, is sufficient to describe the physics.
Likewise, for a narrow Feshbach resonance, in a deep
lattice a tight binding model of open-channel fermions
and closed-channel bosonic molecules coupled by an
on-site interconversion term, Eq. (1) is appropriate.

In this Letter, focusing on the deep lattice regime we
establish that for a broad resonance, a two-component
Fermi gas above half filling undergoes a BCS-BEC cross-
over with the molecular condensate in the Bose-Einstein
condensate (BEC) regime composed of holes; below
half filling the crossover is to a conventional condensate
of diatomic molecules. The BCS and BEC regimes are

separated by an analog of a unitary point where the ther-
modynamic properties of the gas are given by a universal
function of the band filling fraction. For a narrow reso-
nance (recently studied experimentally in Ref. [25]), we
find that while below half filling the behavior is qualita-
tively equivalent to its broad-resonance counterpart, above
half filling the crossover is nonmonotonic and reentrant.
Upon decreasing the detuning the phenomenology crosses
over from a BCS regime to a BEC regime of molecules
composed of holes, back to a BCS regime and finally to a
BEC regime of diatomic molecules. This rich behavior,
illustrated in Fig. 1(a) is associated with a corresponding
nonmonotonic dependence of the chemical potential on the
Feshbach resonance detuning. Concomitantly, the size of a
Cooper pair or molecule changes nonmonotonically, with
the BCS and BEC regimes respectively characterized by
large and small pair sizes in units of the interatomic spac-
ing. This resonant lattice phenomenology can in principle
be probed by measuring correlations in the gas after its
free expansion [26,27], through rf spectroscopy [28], com-
pressibility, and via details of the atomic cloud’s density
profile [7], as illustrated in Fig. 2.
Finally, we find that for a narrow resonance, a fully

filled lattice (band filling of 2) exhibits a quantum phase
transition between a band insulator and a paired superfluid,
absent for a broad resonance with a single band. This latter
transition can be best detected in the ‘‘wedding cake’’
density profile, a layered structure of the gas when placed
in an overall confining harmonic potential, with a shell of a
band insulator sandwiched by an inner superfluid core and
an outer superfluid shell.
We now outline the derivation of these predictions.

We study fermionic atoms in an optical lattice which
contains N sites and M atoms (atom filling fraction n ¼
M=N) for both the one- and two-channel models. The
starting point is to consider the tight-binding two-channel
Hamiltonian
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Here, cyr;�, cr;� are the creation and annihilation operators

of the fermionic atoms at lattice site r with spin �, byr , br
are creation and annihilation operators of bosonic closed-
channel molecules, � is the chemical potential, g is the
coupling, �0 is the ‘‘bare’’ detuning, t (tb) is the hopping
matrix element for the atoms (molecules) and hr; r0i
denotes pairs of nearest neighbor sites. In the absence
of interactions, the bosons and fermions are free parti-
cles, with the tight-binding dispersion of atoms given by

�k¼�2tðcoskxþcoskyþcoskzÞ; �k¼�k��; (2)

where the lattice constant is taken to be 1. Considerable
progress in understanding the thermodynamics can be
obtained through a mean-field approximation where the
closed-channel molecular field is replaced by a class-
ical field bq � B�q;0 with bq a Fourier transform of br.

Diagonalizing the resulting quadratic Hamiltonian and
varying the corresponding ground state energy with
respect to � and B� gives the number and gap equations,

n ¼
Z
BZ

d3k

ð2�Þ3
0
@1� �kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
k þ g2jBj2

q
1
Aþ 2jBj2; (3)

�0 � 2� ¼ g2

2

Z
BZ

d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
k þ g2jBj2

q ; (4)

with the integrals over the entire Brillouin zone (BZ).
The solutions give � and jBj as a function of detuning �0.
We first analyze these equations in a limit of a broad

resonance, corresponding to taking�0 and g to infinity, while
keeping their ratioU ¼ g2=�0 finite. In this limit, the closed-
channel molecules bq can be adiabatically eliminated (inte-

grated out) reducing the Hamiltonian of Eq. (1) to that of
an attractive Hubbard model with the interaction strengthU.
In this limit Eqs. (3) and (4) become

n ¼
Z
BZ

d3k

ð2�Þ3
0
@1� �kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
k þ�2

q
1
A; (5)

1

U
¼ 1

2

Z
BZ

d3k

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
k þ �2

q ; (6)

where � ¼ gjBj is finite, while jBj goes to zero in the
broad resonance limit.
An important feature of these equations (by particle-hole

symmetry that holds even beyond the mean-field approxi-
mation [29]) is that the sign of the chemical potential �
depends on whether the band filling fraction n is above or
below 1 (corresponding to above or below half filling), with
� ¼ 0 for n ¼ 1 independent of� andU. Mathematically,

FIG. 2 (color online). (a) Paired condensate (closed-channel
molecular) density jBj2 as a function of detuning at different
total atom densities n (decreasing from the top n ¼ 2:4 curve to
the bottom n ¼ 1:6 curve). At total density n ¼ 2, the molecular
density vanishes above certain critical detuning, signaling a
quantum phase transition into a band insulator. (b) Radial atomic
density �ðrÞ of a trapped gas in the local density approximation.
The plateau corresponds to an n ¼ 2 band insulator shell,
sandwiched by inner (n > 2) and outer (n < 2) superfluids.

FIG. 1 (color online). The normalized chemical potential in
narrow resonance with two-channel model (a) (for g=t ¼ 20

ffiffiffi
2

p
)

and broad resonance with one-channel model (b). The ranges of
chemical potential corresponding to the BCS and BEC regimes
are indicated. The one-channel model (b) emerges from the
behavior of the two-channel model (a) within the boxed range.
Colored dashed lines correspond to different densities n of the
gas, increasing monotonically as labeled. The leftmost dashed
line in (a) has n > 2. The dots on black lines correspond to the
threshold of the molecule formation in the vacuum.
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the latter is captured by
R
d3k�kFðj�kjÞ ¼ 0 for any func-

tion Fðj�kjÞ for � ¼ 0. To see that the sign of � is inde-
pendent of � and therefore U, suppose n > 1. Then for
� ¼ 0 (corresponding to U ! 0), the right-hand side of
Eq. (5) reduces to the Fermi-Dirac step function, obviously
giving �> 0. Now, for a nonzero �, � must remain posi-
tive since � crossing zero at any � would imply n ¼ 1,
contradicting the n > 1 assumption. Similarly, if n < 1,
then �< 0, independent of U.

Solving Eqs. (5) and (6) numerically gives the relation
between � and U shown in Fig. 1(b). We thus observe that
in this broad resonance regime, for n < 1 the system under-
goes a conventional BCS-BEC crossover, reaching the
BEC regime for strong attractive interaction U (or equiv-
alently for reduced detuning �0), where a large negative
chemical potential is approximately equal to minus half of
the binding energy of molecules. In contrast, for n > 1, as
a reflection of particle-hole mapping between n < 1 and
n > 1 fillings, the�> 0 chemical potential actually grows
with increased attractive interaction, crossing above the
top of the band for large attractive U. This corresponds
to a BCS-BEC crossover to a BEC of molecules of two
holes in the Fermi sea with the chemical potential tracking
half of their binding energy (the chemical potential outside
the single fermion continuum defines the BEC pairing
regime as first discussed in Ref. [30]). At exactly half
filling (n ¼ 1) there is no BCS-BEC crossover, with the
chemical potential remaining pinned exactly at � ¼ 0 for
all U, consistent with particle-hole symmetry of the
Hubbard model at half filling.

At n ¼ 0 and n ¼ 2 Eqs. (5) and (6) can be straight-
forwardly solved analytically. For example, at n ¼ 0 we
expect that � ¼ 0 and � � �6t, dropping below the
bottom of the band. Then Eq. (5) is automatically satisfied
(�k > 0 for all k), and Eq. (6) reduces to

1

U
� C

4t
¼ 1

2

Z
BZ

d3k

ð2�Þ3
�
1

�k

� 1

�k þ 6t

�
; (7)

where C¼R
BZ

d3k
ð2�Þ3

1
3�cosðkxÞ�cosðkyÞ�cosðkzÞ � 0:505. Writing

the right-hand side of the gap equation in this form allows
us to expand the cosines around k ¼ 0 and extend the
integral to infinity (valid as long as ��=ð6tÞ � 1 � 1) to
find

1

U
� C

4t
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j � 6t
p
8�t3=2

: (8)

This is the �ðUÞ relation at the lowest density, n ¼ 0,
corresponding to half of the binding energy of the zero
momentummolecule formed by two atoms. In order for the
molecule to form in three dimensions, U must exceed a
threshold attraction, U > 4t=C, as is known in the absence
of a lattice potential [4,31]. We note, however, that at a
finite center of mass momentum at the Brillouin zone
boundary, a molecule can form at an arbitrarily weak
attraction even in three dimensions [22].

Similarly by particle-hole symmetry, at n ¼ 2 close to
the top of the band �ðUÞ is also given by Eq. (8). The full
�ðU; nÞ dependence for 0< n< 2 can be obtain through a
straightforward numerical or an approximate analytical
analysis of Eqs. (5) and (6). However, it should be kept
in mind that these are in themselves only valid within a
mean-field approximation, except at very small or very
large U (at n � 1).
We observe that at a special value U ¼ 4t=C the inter-

action strength drops out of Eqs. (5) and (6), corresponding
to a divergent scattering length, just like at the unitary point
of the BCS-BEC crossover in the absence of a lattice
potential. Although these mean-field equations are ap-
proximate, this general feature holds more generally,
with the chemical potential at a unitary point U ¼ U�
given by a universal function of particle density

�=t ¼ fðnÞ; (9)

with the property fð2� nÞ ¼ �fðnÞ dictated by the
particle-hole symmetry. In the dilute n ! 0 limit, we
recover the lattice-free result

fðnÞ � �6þ �ð3�2nÞ2=3; (10)

where � is the Bertsch parameter [32], � � 0:4 [33–35].
The full function fðnÞ is not known but can be computed
numerically.
In contrast to the above broad resonance limit (one-

channel model), where n is restricted to 0 � n � 2, in
the two-channel model, Eq. (3), the filling fraction is no
longer limited by two particles per site, as closed-channel
bosonic states can accommodate an arbitrary number of
fermionic atom pairs even if all states in the fermionic band
are occupied. We next study the ground state behavior of
the two-channel model encoded in Eqs. (3) and (4), that in
the narrow resonance limit, g

ffiffiffi
n

p � EF, are quantitatively
trustworthy across the entire phase diagram and in the
opposite broad resonance limit reduce to those of the
one-channel model discussed above.
Solving these equations numerically leads to the�� �0

phase diagram illustrated in Fig. 1(a). Its many features
can be understood analytically, particularly for a narrow
resonance. It displays two phases, a band insulator (BI) and
a paired superfluid (SF), depending on the range of the
chemical potential and detuning. For large positive detun-
ing �0, closed-channel molecules are separated by a large
gap above the fermionic band, leading to a weak attractive
interaction for the atoms. Thus, for a partially filled fermi-
onic band, 0< n< 2, the chemical potential �ðnÞ sits
within the band �6t < �< 6t, and the ground state is a
weakly paired BCS superfluid. Increasing the filling to
n ¼ 2� pushes the chemical potential to the top of the
band, �ð2�Þ ¼ 6t. Since the fermionic band is then full at
n ¼ 2, a further increase in n can only be accommodated by
populating the closed-channel molecular state. For large �0,
the chemical potential therefore jumps from�ð2�Þ ¼ 6t to
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�ð2þÞ � �0=2, which thus determines the lower and upper
phase boundaries of the n ¼ 2 BI.

Reducing the detuning �0 brings down the molecular
state and leads to its hybridization with the pairs of the
fermionic band states and a concomitant increases in the
attractive interactions. Below half filling, n < 1, this leads
to a monotonic emptying of the fermionic band as the BCS
superfluid crosses over to the molecular BEC, familiar
from a narrow resonance BCS-BEC crossover in the
absence of the periodic potential [4].

The phase boundary between the paired superfluid and
n ¼ 0 BI (vacuum) can then be found exactly, as it corre-
sponds to a limit of a two-atom ground state, with
�cð�0Þ � �ð�0; n ¼ 0; B ¼ 0Þ. While for large positive
�0, the phase boundary �cð�0Þ ¼ �6t follows the bottom
of the band, for �0 < ��

0, a true stable molecular bound

state (not just a resonance) peels off from the bottom of the
band following half of the molecular binding energy. To
see this emerge from Eqs. (3) and (4), we set n ¼ 0, B ¼ 0
and note that for � � �6t (below the bottom of the band)
the number equation, Eq. (3), is automatically satisfied.
The gap equation then gives

�0 ¼ g2

4t
Cþ 2�� g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j � 6t
p
8�t3=2

: (11)

For detuning just below ��
0 ¼ g2C=ð4tÞ � 12t the depen-

dence is quadratic�cð�0Þ þ 6t��ð��
0 � �0Þ2 and crosses

over to linear behavior�cð�0Þ � 1
2 ð�0 � ��

0Þ, following the
closed-channel level, as expected from the lattice-free
analysis [4].

Similar to broad resonance, Eq. (11) also depicts the
phase boundary of n ¼ 2. On this boundary the threshold
value of detuning below which the molecular bound state
of two holes can first appear is given by ��

0 ¼ g2C=ð4tÞ þ
12t, with �c ¼ 6t, indicated by a dot in Fig. 1(a). Near
and below this threshold point,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 6t

p
dominates and

leads to a lower branch that grows quadratically, corre-
sponding to half the binding energy of two holes. This
reflects the particle-hole symmetry near this point and is
consistent with earlier analysis of the broad resonance
limit. The upper branch, anticipated on general grounds,
at large positive detuning asymptotes to the linearly grow-
ing solution, �cð�0Þ � �0=2, corresponding to the nearly
decoupled closed-channel state that forms the upper phase
boundary of the n ¼ 2 BI.

From further analysis of Eqs. (3) and (4), for n � 2
we find the ground state is a superfluid for all �0, with
the chemical potential �ðn; �0Þ a smooth function of
the filling n and detuning �0 (i.e., it exhibits a finite
superfluid compressibility), as indicated by dashed curves
in Fig. 1(a). For 1< n< 2, �ðn; �0Þ displays a nonmono-
tonic dependence with �0, that leads to a reentrant BCS-
BEC crossover of holes at intermediate detuning and a
conventional one of atoms at large negative detuning.
We expect that such a nonmonotonic dependence can be

observed in the broad resonance if a second band is
included, which will effectively play the role of the reso-
nant level in narrow resonance.
In contrast, at n ¼ 2 the system undergoes a quantum

phase transition, shown in Fig. 2(a), from a band insulator
to a paired-hole superfluid as �0 is lowered below a critical

value �c ¼ ��
0 � g4

512�2t3
corresponding to the tip of the

band insulator lobe at �c � �ð2; �cÞ ¼ 6tþ g4

1024�2t3
in

Fig. 1(a).
The onset of superfluid order close to �c, where B is

small, can be studied analytically by expanding the number
and gap equations, Eqs. (3) and (4), in Taylor series in jBj2.
This gives that inside the SF phase below �c at n ¼ 2,
�ð2; �0Þ=t is a line of slope 3=4. Around the critical point,
the superfluid order parameter displays the standard mean-

field onset, jBj � ð�c � �0Þ1=2. The paired condensate
(encoded in closed-channel molecular) density jBj2 as a
function of detuning, for different atom densities n is illus-
trated in Fig. 2(a), clearly revealing the BI-SF transition at
n ¼ 2.
Because the fermionic n ¼ 2 BI is continuously con-

nected to a bosonicMott insulator at the filling of one boson
per site, beyond mean-field theory (valid for narrow reso-
nance) we expect this particle-hole symmetric transition to
be in the dþ 1 dimensional xy university class. Among a
variety of other probes, such as thermodynamics, density
profile, time of flight, and noise, the BI-SF transition can be
detected via compressibility, which enters the speed of
sound for the superfluid mode, that we show vanishes at

the critical point and grows as ðn� 2Þ2=3 away from it [24].
To make contact with cold-atoms experiments, the trap

potential VðrÞ must be incorporated. This can be straight-
forwardly done through the local density approximation,
� ! �localðrÞ ¼ �� VðrÞ, where the local chemical po-
tential �localðr; N; �0Þ is maximum in the center of the
cloud and drops off at its edges, and the global �ðN; �0Þ is
set by the total number of atomsN in the gas. The resulting
radial density profile �ðrÞ is simply determined by a cut
through the bulk phase diagram in Fig. 1(a) with �ðrÞ ¼
nð�localðr; N; �0ÞÞ. For �0 > �c and average filling above
2 this predicts an n > 2 superfluid core, surrounded by a
shell of an n ¼ 2 band insulator (with requisite a ‘‘wedding
cake’’ plateau), that is further surrounded by a superfluid at
n < 2. This is shown in Fig. 2(b) for different detunings.
To summarize, we studied an s-wave Feshbach resonant

Fermi gas in a deep lattice potential faithfully modeled
by a single band two-channel model. We showed that for
above half lattice filling it exhibits an interesting reentrant
BCS-BEC crossover phenomenology of paired holes and
atoms associated with the nonmonotonic dependence of
the chemical potential on detuning. For a single filled band
we find a quantum phase transition from an n ¼ 2 band
insulator to a BCS-BEC superfluid, and map out the
corresponding phase diagram. We expect that these pre-
dictions should be testable with current state of the art
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experiments on Feshbach-resonant Fermi gases in optical
lattices.
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