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We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates

causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional

subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink

formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic

scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into

how the extra dimensions influence subspatial phase transition in higher-dimensional space.
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A tachyon is a hypothetical superluminal particle that
violates causality in special relativity. Most physicists deny
its existence because it is inconsistent with the known laws of
physics. However, in quantum field theories, a tachyon field
can exist due to the instability of quantum vacuum. Here, the
‘‘instability’’ means that the state is at a maximum of an
effective potential VðTÞ for the tachyon field T [Fig. 1(a)].
The tachyon field grows exponentially with time and rolls
down toward a minimum of the potential as the true vacuum.
This process is called tachyon condensation [1].

Tachyon condensation is a key concept used for describing
the dynamics of string theory, a promising candidate for a
‘‘theory of everything’’ that describes all fundamental forces
and forms of matter in nature [2]. In this theory, a tachyon
exists in a system containing a Dirichlet(D)-brane and an
anti-D-brane, where the former is an extended solitonic
object [2] and the latter its antiobject. The two annihilate in
a collision similarly to particles-antiparticles annihilation in
a collision. The annihilation process is described by tachyon
condensation, and the system falls into the true vacuum after
complete annihilation [1].

A remarkable application of tachyon condensation is in
brane cosmology [3–6], in which the big bang is hypothe-
sized to occur as a result of a collision of a brane and an
antibrane. After this collision, lower-dimensional branes
remain as relics of tachyon condensation [1], which corre-
spond to cosmic strings in brane cosmology [7–9] [see
Fig. 1(b)]. This situation resembles conventional phase
transitions accompanied by spontaneous symmetry break-
ing (SSB), resulting in the formation of topological defects
via the Kibble-Zurek mechanism [10,11]. This mechanism
produces topological defects in the early Universe due to
phase transitions [12], which has been tested in several
condensed matter systems [13–21]. In contrast, tachyon
condensation as a SSB phenomenon has not yet been well

understood. Because it may lead to defect nucleation in a
restricted lower-dimensional subspace, the dynamics
should be affected by the degree of freedom associated
with the extra dimension. However, the influence of the
extra dimension has never been discussed, partly because
such phenomena are absent in actual systems.
Here, we provide a ground-breaking system to tackle this

problem, using atomic Bose-Einstein condensates (BECs).
Tachyon condensation is simulated by considering vortex
formations from a pair annihilation of domain walls, i.e.,
branes, in binary BECs. This system is advantageous in that
we can theoretically and experimentally address the non-
linear dynamics of branes, such as defect nucleation and
subsequent dynamics, which is difficult in string theory.
Anderson et al. [22] observed the creation of vortex rings
via the dynamic (snake) instability of a dark soliton in two-
component BECs, where the nodal plane of a dark soliton in
one componentwasfilledwith the other component and then,
the filling component was selectively removed using a reso-
nant laser beam. Recently, we proposed that domain walls
in phase-separated, two-component BECs correspond to
D-branes in the sense that vortex lines (strings) can terminate
on them [23]. Therefore, the experiment in Ref. [22] may be
interpreted as the demonstration of defect formations via
brane annihilation [24], although those phenomena have
never been understood as SSB phenomena in a restricted
lower-dimensional subspace. In this Letter, we theoretically
show that a domain-wall annihilation causes spontaneous
Z2 symmetry breaking and phase-ordering dynamics in the
two-dimensional subspace, where a tachyon field is intro-
duced by projecting the original order parameters onto the
branes in three-dimensional space. Our theory is justified by
demonstrating the scaling lawof phase-ordering kinetics [25]
in numerical experiments [see Figs. 1(d) and 2(b)]. Although
the analogue of the brane annihilation was simulated

PRL 109, 245301 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

0031-9007=12=109(24)=245301(5) 245301-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.245301


experimentally on the AB phase boundary of superfluid 3He
[26], its theoretical explanation remains lacking. This work
provides the first theory of brane-annihilation phenomena in
condensed matter systems.

We consider two-component BECs, which consist of
condensations of two distinguishable Bose particles. Two-
component BECs are well described by two complex order
parameters, �j (j ¼ 1, 2), in the Gross-Pitaevskii model at

zero temperature [27]. The order parameters in a uniform
system obey the action S ¼ R

dt
R
d3xði@Pj�

�
j@t�j �

K�V Þ with kinetic energy density K¼P
j

@
2

2mj
jr�jj2

and potential energy densityV¼P
jð
P

k
gjk
2 j�kj2��jÞj�jj2.

Here, we have expressed the coupling constant gjk ¼
2�@2ajk=mjk (j, k ¼ 1, 2) with the reduced mass m�1

jk ¼
m�1

j þm�1
k and the s-wave scattering length ajk between

atoms in the�j and�k components. The chemical potential

�j is introduced as the Lagrange multiplier for the conserva-

tion of the norm Nj ¼
R
d3xj�jj2 ¼ const, which gives the

particle number of the �j component. We consider strongly

segregated BECs and set the parameters as m1 ¼ m2 � m,
g11 ¼ g22 � g, �2=�1 � �, and g12=g � � ¼ 2; this pa-
rameter setting is experimentally feasible, e.g., Ref. [28].
The time and length scales of our system are characterized
by � � @=�1 and � � @=

ffiffiffiffiffiffiffiffiffiffi
m�1

p
, respectively.

Let us consider the annihilation of a domain wall (brane)
at z ¼ �R=2 and an antidomain wall (antibrane) at z¼R=2
perpendicular to the z axis, between which the �2 compo-
nent is sandwiched by the two domains occupied with the
�1 component. We define the interbrane distance R as the
distance between the two planes defined by j�1j ¼ j�2j.
The distance R increases with N2, which is controllable
experimentally [22]. Because the ‘‘penetration’’ of the
amplitude j�1j (j�2j) decays exponentially with distance

into the �2 (�1) domain, the short-range interaction

between the branes works effectively only when R is com-

parable to the penetration depth, or the brane thickness, and

then the annihilation process can start substantially. The

trivial process of pair annihilation is that the branes collide

to leave the trivial state �1 ¼ const. However, the annihi-

lation processes become nontrivial depending on the phase

difference �� � arg�1ðz � R=2Þ � arg�1ðz � �R=2Þ.
Since the essential mechanism of the nontrivial annihila-

tion has been discussed partly in Ref. [24], we explain it

briefly here [29]. To capture the essence of the annihilation

process, we assume that two branes with large Rð� �Þ are
brought rapidly to a small distance R & �, but the two �1

domains are disconnected at t ¼ 0 [30]. In the annihilation

process, junctions connecting the two �1 domains emerge

in various places on the x-y plane around z ¼ 0. For

�� � 0, a junction causes a superfluid current along the

z axis with a current velocity v? � @

m��=R > 0 or v? �
@

m ð��� 2�Þ=R < 0. If the current velocities through the

two neighboring junctions are parallel, the annihilation is

completed between the junctions. On the other hand, the two

junctions with opposite velocities leave a single-quantum

vortex in the �1 component, where the �2 component is

trapped in the vortex cores so that N1 and N2 are conserved.
Although the growth rates of junctions with v? > 0 and

v? < 0 are generally different, they are statistically
equivalent for �� ¼ �. Then the junctions grow in a
random fashion from initial random fluctuations, and vor-
tices emerge as serpentine curves along the boundary
between the two opposite junctions. These scenarios are
demonstrated numerically as shown in Fig. 1(c) [29]. The
snake instability observed by Anderson et al. corresponds
to the coincident limit of the two branes (R ! 0) with
�� ¼ �, where the vortex ring nucleation results from

-

y

x -

x

y
z

t/τ = 0 t/τ = 32 t/τ = 40 t/τ = 56 t/τ = 104 t/τ = 176

T

V(T)

0

(a)

(b)

(c)

(d)

π

π

π

π

FIG. 1 (color online). (a) Schematic diagrams of tachyon condensation. (b) Schematic diagrams of an annihilation of a brane pair
and the relic lower-dimensional objects. (c) Dynamics of a domain wall pair annihilation in a numerical experiment for � ¼ 0:84 and
�� ¼ �. Panels show the time development of the isosurface j�1j ¼ j�2j. Black curves represent the cores of vortices in the �1

component (not shown for t=� ¼ 0). The phase arg�1 strongly fluctuates in the region j�1j � 0 between the branes, where there are
many vortices with little vorticity of mass current (t=� ¼ 32). The initial fluctuation grows into a meshed structure (t=� ¼ 40). The
structure yields serpentine vortices, which trap the �2 component along the vortex cores. The �2 component propagates along the
cores and causes varicose oscillations of the isosurface. Reconnections between vortices accidentally create vortex rings or disk-shaped
density pulses, which escape to the bulk. (d) Panels show the time development of the projected field �ðx; y; tÞ of Eq. (5), calculated
from the results of (c). The box sizes are 80�� 80�� 25:6� for (c) and 102:4�� 102:4� for (d).
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the spherical geometry of the external potential [22]. More
generally, we can regard the interbrane distance R and the
phase difference �� as two parameters to characterize the
dynamics of the brane annihilation.

To describe the annihilation process systematically, we
construct an effective field theory parametrized with R and
��. Tachyon condensation in string theory is explained by
introducing a growing field, that is, the tachyon field, in the
lower-dimensional space spanned by the coordinates along
the branes [1]. In a similar manner, we consider an effec-
tive tachyon field Tðx; y; tÞ as a real scalar field in a two-
dimensional space parametrized by x and y. On the basis of
the vortex formation mechanism explained above, we
introduce the variational ansatz,

�1¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�1=g

q � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh2ðz=�?Þe�i��

q
þTsech2ðz=�?Þ

�
; (1)

�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
n2ðTÞ

q
sechðz=�?Þ; (2)

where Tðt ¼ 0Þ ¼ 0 and the sign � in Eq. (1) takes þ (�)
sign for z < 0 (z > 0) [31]. This ansatz describes the anni-
hilation starting from a small interbrane distance, where the
population of the�2 component is small between the branes
at t ¼ 0. The parameters n02 � n2ðt ¼ 0Þð	 0Þ and �? are

determined tominimize the energy
R
d3xðKþV Þ at t ¼ 0.

The ansatz at t ¼ 0 reasonably reduces to the solution of a
dark soliton with �? ! � andR ! 0 for n02 ! 0 and�� ¼
�. The growth of the tachyon field from T ¼ 0 into T > 0
(T < 0) induces a superflow with v? > 0 (v? < 0).
Although the dynamics may be described more precisely
with additional variational parameters, our simplest ansatz
is enough to capture the essence of the vortex formation
dynamics.

The effective potential for the tachyon field T, namely
the tachyon potential V, is defined as a function of T,
VðTÞ ¼ Rþ1

�1 dzðKþV Þ with @x�j ¼ @y�j ¼ 0. We

assume that the density parameter n2ðTÞ 	 0 is determined
so as to minimize V. It is straightforward to obtain the form

V ¼ �2
1�?
g

X4
n¼0

FnT
n; (3)

where Fn ¼ Anð��; �; �Þ þ Bnð��; �; �Þ�ðn2Þ with a
step function, �ðn2 > 0Þ ¼ 1 and �ðn2 
 0Þ ¼ 0. The con-
tribution from the gradient rk � ð@x; @yÞ along the coor-

dinates parallel to the brane is calculated similarly. The
original energy is then reduced to the form

E2D ¼
Z

dxdy½GðTÞð�rkTÞ2 þ VðTÞ�: (4)

Here, the coefficient GðTÞ> 0 in the gradient term
depends on T (see Ref. [29] for details).

Equation (4) represents the effective energy for the field
T in the projected two-dimensional system. The potential
V is symmetric Vð�TÞ ¼ VðTÞ for �� ¼ �, because the

coefficients F1 and F3 are proportional to cosð��=2Þ. The
Z2 symmetry comes from the degeneracy of the kinetic
energy / v2

? � ð@�=mRÞ2 for�T owing to a symmetry in

the initial configuration; Re�1ðt ¼ 0Þ ¼ �Re�1ðt ¼ 0Þ
with �� ¼ �. In terms of relativistic quantum field

theory, we find a particlelike state with a mass mT �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V00ðT ¼ 0Þ=2p ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�?F2=g

p
by expanding the potential

V around T ¼ 0. For F2 > 0, this describes a conventional
particle: however, for F2 < 0, this describes a particle with
purely imaginary mass m2

T < 0, i.e., a tachyon. The exis-
tence of a tachyon implies instability of the system,
because a tachyon rolls down from the potential maximum
at T ¼ 0 toward a potential minimum with T > 0 or T < 0
[32]. Figure 2(a) shows the tachyon potential VðTÞ for
�� ¼ � and � ¼ 2. The coefficient F2 increases with
� ¼ �2=�1, and the tachyon potential is convex upward
around T ¼ 0 for � 
 1. Because R is an increasing func-
tion of �, the instability becomes stronger as the interbrane
distance R decreases.
The tachyon field T is an analogue of the order-parameter

field, e.g., the magnetization density, of a ferromagnetic
system [33] in a continuum description. The rolling tachyon
corresponds to the spontaneous Z2 symmetry breaking from
the zeromagnetization T ¼ 0 toward a macroscopic magne-
tization T > 0 or T < 0 in the ordered phase for �� ¼ �
[34]. In this sense, the interbrane distance R and the phase
difference �� ( � �) play the roles of the temperature and
external magnetic field, respectively. The coefficient F2

increases with the temperature R, implying that the instabil-
ity becomes weak for a small interbrane interaction for large
R. Because the interbrane interaction decays exponentially
with R for large distance and the instability vanishes pre-
cisely for R ! 1, the infinity distance may correspond to
the transition temperature. Although F2 reached zero for
finite R in our effective model, the tachyon potential VðTÞ
well reflects the nature of the instability for small R. On the
other hand, the fieldT feels themagnetic field for 0 
 ��<
� (�<�� 
 2�), and then, magnetization T > 0 (T < 0)
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FIG. 2 (color online). (a) Plots of the tachyon potential with
�� ¼ � for � ¼ 0:84, 0.92, and 1.00. The potential VðTÞ takes
its minimum value VðTbÞ at T ¼ �Tb. (b) Structure factor of �
in the numerical experiment [Fig. 1(d)]. The factor Sðq; tÞ is the
average of Sðq; tÞ over directions of q. The dashed line is the
expected law, SðqÞ / q�3 for q=l2D � 1, which is not observed
in the small system.
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is energetically favorable. In the original three-dimensional
system, this is energetically explained from the difference in

the kinetic energy induced by the rolling tachyon, / v2
? �

ð@��mR Þ2 for T > 0 and / v2
? � ½@ð���2�Þ

mR �2 for T < 0.

A vortex between junctions with v? > 0 and v? < 0 is
considered a kink between the regions with T > 0 and T < 0
in the projected two-dimensional space. The validity of
the effective theory is confirmed by evaluating the defect
nucleation rate. The effective theory neglects the transfer of
particles in the x and y directions in the defect formation
process, violating the law of particle number conservation.
However, the violation influences little on the rate evaluation
for small R. According to the evaluations with several
analytical and numerical methods in Ref. [29], the rate con-
sistently decreases with R.

Finally, we provide the most important evidence show-
ing that the field T behaves actually as a two-dimensional
order parameter. According to the scaling law in the phase-
ordering kinetics [25], the spatial structure of the order
parameter is characterized by a single length scale, i.e., the
mean interdefect distance, after a rapid quench from the
disordered phase into the ordered phase. In the simulations
of the three-dimensional system, the density of kinks in
the field T is calculated from the line density l2D of the
projection of vortices onto the x-y plane by assuming that
there is no overlap between the projection lines of different
vortices. To visualize the dynamics of T, we introduce the
projected field

�ðx; y; tÞ � m

@

Z þ1

�1
dzv?ðr; tÞ; (5)

with the superfluid current velocity v? ¼ @

P
j
j�jj2@z arg�j

m
P

k
j�kj2 .

Far from kinks in the projected two-dimensional space, we
have �2 � 0 and then both fields � and T are constant,
�ðx; yÞ � �� and Tðx; yÞ ¼ �Tb, where VðTÞ takes its
minimum value at T ¼ �Tb. The nonzero �2 component
around the kink cores could yield different spatial depen-
dences of the two fields. Thus, a spatial structure of the
projected field �ðx; y; tÞ represents that of Tðx; y; tÞ on a
length scale larger than the kink width 	 , which is suffi-
cient for the following analysis.

If the field � obey the scaling law, its structure factor
Sðq; tÞ for the wave number jqj � 1=	 is written with a
time-independent function F as F ðq=l2DÞ ¼ Sðq; tÞl22D.
Here, the scaling form is expected to follow the universal
law Sðq; tÞ � ðl2D=qÞdþ1=ld2D, known as the Porod law, with
the spatial dimension d ¼ 2 for q=l2D � 1 [25].

Figure 2(b) shows scaling plots of Sðq; tÞ for the numeri-
cal experiment of Fig. 1(c). The dynamics of� in Fig. 1(d)
resembles ferromagnetic relaxations after rapid quenching.
In fact, the scaling plots almost coincide with each other
after the domain structures of � become clear. The scaling
behavior is seen from the similarity between the patterns of
t=� ¼ 104 and t=� ¼ 176 in Fig. 1(d). These facts show

the domain-wall annihilation is regarded as phase ordering
in the projected two-dimensional space.
The time dependence of l2D contains a statistical infor-

mation. The density l2D follows a power law, 1=l2D / t1=2

[29], which indicates that the projected two-dimensional
system is dissipative. The dissipation may come from some
degrees of freedom, neglected in the effective theory, such
as the motions of the�2 component along the vortex core,
emissions of vortex rings, and density pulses to the extra
dimension induced by vortex reconnection [see Fig. 1(c)
and the caption]. It is interesting that strings stretched
between the brane and the antibrane cause a complex-scalar
tachyon field in string theory [1], while the real-scalar field
comes from fluctuating fields in the wall-antiwall back-
ground in our system. If vortices are stretched between
the domain walls, a ‘‘vorton,’’ a pointlike defect in three
dimensions, can be nucleated due to superflow of the �2

component along the vortex core [35]. These issues will be
discussed elsewhere.
Our proposal gives the first realistic example of non-

relativistic tachyon condensation due to the brane annihila-
tion phenomena. Because the instability is essentially
caused by the spatially inhomogeneous junctions between
two domains described with the same order parameter, the
phenomenon may be generalized to a problem of a sudden
connection between two media in the same ordered phase.
Therefore, it is expected that our theory can be extended to
various condensed matter systems. The 3He-brane experi-
ment [26] should be retested from the viewpoint proposed in
this work. Because techniques for detecting the vortex line
density in the 3He system are well developed, some statis-
tical information about the brane annihilation could be
observed from the power-law decay of the defect density.
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