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We demonstrate that a mm-scale free-electron laser can operate in the x-ray range, in the interaction

between a moderately relativistic electron bunch, and a transverse high intensity optical lattice. The

corrugated light-induced ponderomotive potential acts simultaneously as a guide and as a low-frequency

wiggler, triggering stimulated Raman scattering. The gain law in the small signal regime is derived in a

fluid approach, and confirmed from particle-in-cell simulations. We describe the nature of bunching, and

discuss the saturation properties. The resulting all-optical Raman x-ray laser opens perspectives for

ultracompact coherent light sources up to the hard x-ray range.
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The advent of fully coherent light sources in the x-ray
range promises to be the next revolution in x-ray science,
leading to many scientific, industrial, and health applica-
tions. Large-scale x-ray free-electron laser (XFEL) projects
have been launched, and have started supplying high
brightness beams for novel physics experiments [1].
However, these large scale infrastructures cannot allow
for widespread dissemination of the XFEL technologies,
which would require to shorten very significantly the length
of the linear accelerators and magnetic undulators. These
size constraints also prevent one from reaching the hard
x-ray range, which would open entirely new perspectives.

Few alternative strategies have been proposed to supply
compact x-ray free-electron lasers, based on substitution of
the LINAC by laser-wakefield acceleration [2,3], use of
original compact undulators as an ion channel [4], or a
counterpropagating laser [5–7]. Laser undulators indeed
offer a key advantage: laser wavelengths at the �m level
allow one to reach x-ray photon energies with moderately
relativistic electrons, of kinetic energies of few tens of
MeV only. In all cases, the XFEL is expected to operate
in the conventional regime of stimulated inverse Compton
scattering, imposing severe limitations on electron emit-
tance, transport, kinetic energy spread, and laser uniform-
ity for laser undulators [8], thus hindering prospects of
experimental demonstrations.

A conceptually different new scheme considers a rela-
tivistic electron bunch injected into the overlap region
between two transversally incident, counterpropagating
intense lasers beams [9]. The setup is depicted in Fig. 1,
directly in the reference frame of the electron bunch. The
interference between the laser beams forms an optical
lattice, and induces a spatially corrugated ponderomotive
potential for the incident electrons that is trapping them
transversely. The electron dynamics then consists of high
frequency oscillations induced by the two lasers along the
laser polarization direction, and of low frequency oscilla-
tions along the interference direction, similar to betatron
oscillations, with a characteristic angular frequency �.

Light is hence scattered at the betatron frequency, and on
the Stokes and anti-Stokes lines around the laser frequency.
In the laboratory frame, this scattering is Doppler up-
shifted by 2�2, where � is the electron Lorentz factor.
Scattering is spontaneous as long as the electron motions
are uncorrelated; however, electrons may also exhibit a
collective low-frequency oscillatory behavior, so that we
can expect a stimulated Raman instability and coherent
emission of x-ray radiation in the forward direction. This
Raman-type scattering should be distinguished from the
known Raman instabilities in conventional long wave-
length free electron lasers, where the system oscillations
are the Langmuir plasma waves [10]. This new Raman
instability dominates if the bounce frequency � is greater
than the electron beam plasma frequency !p.

The aim of the present Letter is to investigate the x-ray
amplification process in this trapped mode on the basis of
particle-in-cell numerical simulations, and to derive its
main scaling laws on small-signal gain and saturation,
from an analytical hydrodynamic model.
Let us consider a relativistic electron bunch moving

along a z axis, with an average Lorentz factor up to a
hundred typically, and number density n0e, incident onto
the optical lattice resulting from overlapping twin laser
beams, interfering along the x axis. The light lattice

FIG. 1 (color online). X-ray Raman scattering geometry in a
reference system moving with the electron bunch.
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intensity is considered as subrelativistic, typically in the
range 1016 to 1018 W=cm2 for near infrared lasers.

The process is conveniently described in the frame
moving with the electron beam velocity vb ¼ c�b & 1,
for which the incident laser and scattered field frequencies
are similar, and electron motion can be treated nonrelativ-
istically. The twin lasers appear in that frame at oblique
incidence, with an angle defined as k0?=k0k¼1=��b�1,
see Fig. 1. Subrelativistic lattice intensity defines a mod-
erate vector potential, which is a Lorentz invariant and in

dimensionless units reads a0 ¼ 0:85� 10�9�l
0

ffiffiffiffi
Il

p
, where

I (W=cm2) is the laser intensity and �l
0 (�m) the laser

wavelength. With the superscript ‘‘l’’ we denote the pa-
rameters in the laboratory reference frame.

In that frame, electrons first enter a ramp-up region,
followed by an optical lattice of a constant intensity; in
the bunch frame, this process is described as a relatively
slow switch-on of the external electromagnetic field. The
normalized vector potential of the incident laser irradiation
reads as

aL ¼ a1 þ a2 ¼ 2a0ðtÞ sinðk0?xÞ cosð!0tþ k0kzÞ; (1)

resulting in a ponderomotive potential Up:

Upðx; tÞ ¼ mec
2a0ðtÞ2sin2ðk0?xÞ:

Near the bottom of the potential, electrons oscillate with

the bounce frequency �ðtÞ ¼ ffiffiffi
2

p
a0ðtÞk0?c.

Field amplitude grows during a time tinj up to a0.

Electrons with transverse velocities, v? � ffiffiffi
2

p
a0c, may

be trapped in the ponderomotive potential and oscillate
along the closed phase trajectories in the (x; px) plane.
Particles with lower initial velocities are trapped before
tinj, and further growth of potential adiabatically com-

presses their phase trajectories, thus increasing the velocity
amplitude and electron density at the beam axis [11].
The maximum electron density after injection can be esti-
mated as:

ne ¼ n0eð
ffiffiffi
2

p
a0=��0?Þ: (2)

Trapped electrons are driven at high frequency by the
lasers, and oscillate transversely in the optical lattice po-
tential, akin to the betatron oscillations in plasma ion
channels [12,13], with a harmonic law xe ¼ xm cosð�tÞ,
where � ¼ ffiffiffi

2
p

a0k0?c. Radiation is emitted in two fre-
quency ranges: at the betatron frequency [14,15]; and
symmetrically around the laser frequency, at the Stokes
!0 �� and anti-Stokes !0 þ� frequencies [9].

We have developed a numerical tool, dubbed EWOK, to
investigate the scattering process in the bunch frame. The
two-dimensional code is based on a general particle-in-cell
approach [16]; it factors out the high-frequency, laser-
induced oscillations of electrons, solving relativistic
motion equations for macroparticles in electrostatic and
ponderomotive potentials. The scattered wave is described

in the envelope approximation as ¼ �a expð�i!0tþ ik0zÞ
as a slowly oscillating amplitude �a. This allows us to reduce
to first order the propagation equation along z, and to solve it
over x by a Fourier transform @2x �a ! �k2x �akx . The simula-

tion domain is a rectangular box, whose dimensions lz;x
define a discrete number of electromagnetic eigenmodes.
Boundary conditions are periodic for both electromagnetic
waves, while for the particles, boundaries are periodic along
the z axis and absorbing along the x direction. Thus, the beat
between the laser and the scattered wave must be periodic,
which imposes constraints on the wave vectors (ks � k0) of
the scattered wave, and (ks þ k0k) of the longitudinal pon-
deromotive force. For a plane scattered wave at the Stokes
frequency, the corresponding periodicity conditions read:

ks ¼ k0ð1� N1�0=lzÞ; lz=�0 ¼ N2=ð1þ �bÞ; (3)

N1 and N2 being integers. These conditions lead to exceed-
ingly long simulation domains for large � values. We
perform, therefore, simulations with a relatively low �,
and exploit the analytical laws to rescale the results to
experimentally relevant parameters.
We have used EWOK to simulate amplification on

the Stokes mode, satisfying the resonance condition
!0 �!s ¼ �, with the physical parameters summarized
in Table I, and on the basis of 5:2� 106 macroparticles.
Figure 2 presents the time evolution of the scattered field

amplitude on the right boundary. In the interval 100< t <
500�0=c, one can see an exponential growth of the signal,
followed by saturation at the amplitude hasi=a0 ’ 1:4�
10�3. The exponential growth rate is estimated as �=!0 ¼
1:9� 10�3, the fit being plotted as a dotted line. For 1 �m
laser wavelength, this corresponds in the laboratory frame
to a gain length in intensity of only Ll

gain ¼ 84 �m.

The laser electric field changes its sign across the zero
lines of ponderomotive potential wells. The beat between
the laser and the scattered wave is hence in phase opposi-
tion on the two sides of a well, resulting in an antisym-
metric bunching structure. This is illustrated in Fig. 3,

TABLE I. Interaction parameters.

Laboratory Moving beam

Electron beam

Current 8 kA Density 2� 10�5nc
Width 3 �m Width 3 �m
Duration 10 fs Length 30 �m
��e=� 10�4 ��k0 10�4

Emittance 0:3 mm �mrad ��?0 0.1

Energy 4.7 MeV � 9.4

Optical lattice

�l
0 1 �m �0 106 nm

Intensity 1:6� 1016 W=cm2 a0 0.11

Ramp 200 �m �inj 200�l
0=c

Scattered light

�l
s 5.6 nm !s 0.985!0

PRL 109, 244802 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

244802-2



showing the completely trapped electron distribution at
saturation. A quasisinusoidal bunching shape can be
noticed, in sharp contrast with the series of parallel micro-
bunches of conventional free-electron lasers.

These numerical findings can be completed by an ana-
lytical analysis; while several theoretical approaches are
possible, we choose to put forward a hydrodynamic model,
that yields relevant estimates for the scaling laws within a
simple mathematical framework. We propose to model
amplification analytically by describing the collective elec-
tron behavior nðx; z; tÞ as an eigenmode of the light
potential well. In a simplified approach we neglect the
electrostatic potential of electrons and the longitudinal
temperature, and consider the transverse temperature to
be below the trapping limit. Electron motion follows
hydrodynamic equations, coupled to the propagation equa-
tion for the light vector potential:

@tne þr � ðneuÞ ¼ 0; (4a)

@tux þrxPxx=mene þrxUp ¼ 0; (4b)

@tuz þrzUp ¼ 0; (4c)

ðð@t � i!0Þ2 � c2r2Þ �a ¼ �ð4�e2=meÞne �a; (4d)

where u is the electron fluid velocity. Considering the
slowly oscillating vector potential �a defined earlier, the
ponderomotive potential reads Up ¼ meðc=2Þ2j �aj2. Note
that �a in Eq. (4) is the total field, including the scattered
and laser fields.
The beam is trapped along x, so it follows the adiabatic

equation of state with the electron pressure reading
Pxx ¼ mv2

?n
3=3n20, where v? ¼ c��?0 is defined by the

transverse velocity spread. Considering the equilibrium
between lattice potential and electron pressure, we find
the transverse density distribution of the background state

ne ¼ n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
;

where � ¼ x=L is a coordinate normalized to the beam
width L ¼ v?=�, and n0 ¼ neð0Þ is a maximum electron
density.
In the linear approach, we consider the collective elec-

tron modes as a first-order perturbation of the beam
position �x, defined as � ¼ ðxþ �xÞ=L. Without a signal
wave there is no longitudinal force @zUp, and from Eq. (4)

it follows:

@2t�x ¼ ��2�x;

which describes the collective beam oscillations with a
frequency �.
The small-amplitude signal wave as is taken as a per-

turbation to the laser vector potential, inducing to first

order a ponderomotive potential Uð1Þ
p ¼meðc=2Þ2 �as �a�Lþ

c:c: Assuming a plane scattered wave—thus, neglecting
diffraction—we linearize Eq. (4) and turn to the Fourier
domain, to obtain the dispersion equation:

ð!2 ��2Þ½ð!�!0Þ2 � ðkz � k0kÞ2c2� ¼ 	!4
0: (5)

This equation describes electron and electro-
magnetic modes with a coupling coefficient 	 ¼
Gð!pa0kzck0?L=!2

0Þ2, where G is an overlap integral

resulting from an inhomogeneous profile of the laser field

/ x and the beam density / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=L2

p
. Thus, the model

predicts that amplification is localized mainly in the

regions around the coupling maxima at � ¼ � ffiffiffiffiffiffiffiffi
2=3

p
,

with widths � ’ 0:5. This analytical prediction was
checked numerically. Figure 4 shows the spectra of elec-
tron density perturbations (abscissa) as a function of the
transverse position x, for an arbitrary fixed position z. The
spectra are centered at the betatron frequency � ¼
0:016!0. The transverse distribution consists of two sym-
metric maxima, as predicted by the hydrodynamic model.
The dashed line is obtained from the simulation, while the
white curve shows the transverse coupling function for a
trapped beam half-width L ¼ �0. The numerical shape is
slightly broader, but the general structure of the emitting
zones is well reproduced.

FIG. 2 (color online). Evolution of the vector potential at the
center of the right boundary ðz; xÞ ¼ ðlz; 0Þ. The exponential fit
�=!0 ¼ 1:8� 10�3 is shown by a red dotted line.

FIG. 3 (color online). Snapshot of electron density distribution
at saturation time 600�0=c.
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The solution to Eq. (5) for the Stokes mode is a complex
frequency with a real part ! ’ � and a positive imaginary
part �, defining the amplification growth rate. Assuming a
weak coupling condition	 � ð�=!0Þ3, the growth rate is:

�=!0 ¼ 0:5ð	!0=�Þ1=2: (6)

Estimating G ’ 0:2, and using parameters applied in nu-
merical modeling (Table I), we obtain a growth rate
�=!0 ¼ 1:7� 10�3.

The exponential growth of the signal saturates when the
electron beam gets trapped in the longitudinal potential
j �as �a�Lj, resulting in a full particle bunching ne 	
n0 expð�i�tÞ þ c:c:. From Eq. (4d), the maximal signal
amplitude can be deduced as:

hasi=a0 ’ ðk0?LÞ!2
p=ð�!0Þ: (7)

For the chosen parameters, the signal saturation occurs at
hasi=a0 ¼ 1:7� 10�3. These analytic estimates of the
growth rate and maximum of the scattered field are in
good agreement with results of numerical modeling.

In the laboratory frame, the growth rate reads �l=!l
0 ¼

�=2!0, and can be expressed as a function of the initial
parameters:

�l=!l
0 ¼ 0:1ðK=�Þð�0=
?Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0J=JA

q
; (8)

where K ¼ k0?L is a numerical factor defined by the fill-
ing of potential channel by electrons and JA ¼ 17 kA is the
Alfven current. In normal trapping conditions, K ’ 1.

These scaling laws provide estimates of the gain and
saturation level from a Raman XFEL derived from laser-
wakefield acceleration. Let us consider parameters close to
ones achievable in the experiments [17]: an electron bunch
of 50 MeV, with a peak current of 14 kA, and 1 mm-mrad
emittance. Twin undulator lasers are at a wavelength of
800 nm, with an intensity of 3� 1017 W=cm2, correspond-
ing to a normalized vector potential of 0.4. The output
x-ray photons have an energy of 30 keV; the gain in
intensity extrapolated from our numerical results is

15 cm�1. Assuming a transverse size of 3 �m, an x-ray
duration of 10 fs, results in an x-ray energy at �J level, or
108–109 photons.
Note that photon emission results in an electron recoil.

In the electron rest frame, the recoil can be observed
numerically as a collective backwards motion along the z
axis, which starts near the saturation stage. Since emission
is a quantum process, in the case of high photon energies
the recoil has a discrete nature, and a quantum description
may become appropriate. A significance of quantum ef-
fects is defined by a quantum-recoil parameter [18], as a
ratio of the recoil induced detuning and the gain band-
width. It reads in our model q0� ¼ ð�e@!0Þ=ðmec

2�=!0Þ.
Parameters in the present examples are restricted to
q0� < 1, where a classical description is valid.
In summary, we have shown that a relativistic electron

bunch, injected into and guided by a high intensity optical
lattice, triggers a forward Raman instability resulting in a
rapid amplification of a coherent x-ray beam. If coupled to
laser-wakefield acceleration, this process promises to yield
hard x-ray laser beams. Raman processes often exhibit an
intrinsic robustness with respect to random variations of
the driving parameters [19], such as the laser intensity,
which may be a key to the experimental demonstration.
The Raman x-ray free electron laser should therefore be
further studied as an opportunity to supply ultracompact
coherent x-ray sources, up to the hard x-ray range.
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