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We show that the interaction between a surface and a charge packet moving parallel to it can become

repulsive above a critical relativistic energy. We find that this is true for a lossless dielectric surface and

also for a Drude metallic surface—in apparent contrast with such common notions as image charge.

This counterintuitive phenomenon occurs for packets larger in the transverse than in the longitudinal

(parallel to the motion) direction. The repulsion does not occur for a point charge that is instead attracted

at all energies. In addition to the above attractive or repulsive transverse force, there is a longitudinal

decelerating force, which for a dielectric corresponds to the Čerenkov effect. Once again, the behavior of a

line packet differs from that of a point charge: for a packet with infinite transverse size, the decelerating

field decreases to zero as the relativistic factor � ! 1, whereas, for a point charge, the asymptotic value is

finite. These findings have a potential impact not only on fundamental electrodynamics but also on

accelerator physics and electron spectroscopy.
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The interaction between still or moving charges and
solid surfaces was extensively studied for point charges
and for relativistic bunches elongated in the longitudinal
direction, parallel to the motion. Not much is known about
transverse bunches: we discovered that their properties are
rather counterintuitive and depart from basic notions of
elementary electromagnetism.

For point charges, one can refer to the classic article of
Bolotovskii [1] on the rigorous theory of Čerenkov ra-
diation in finite-size media. A particle moving in vacuum
at speed v parallel to the surface of a lossless dielectric
experiences a decelerating longitudinal force, which for
v ¼ c has magnitude equal to twice the static (trans-
verse) image charge force produced by a metal surface
[2]. The moving particle also experiences a transverse
attractive force for all speeds of magnitude similar to the
decelerating force. Specific nonrelativistic cases were
later studied because of their importance for electron
spectroscopy [3–8].

De Zutter and De Vleeschauwer [9] and Schieber and
Schächter [10–12] expanded the analysis of relativistic
behavior for point charges near dielectric and metal sur-
faces. It was specifically shown [10] that the transverse
force decreases with the relativistic gamma factor as 1=�.
Accelerator physics stimulated the analysis of longitudinal
relativistic packets, e.g., the issue of wakefield acceleration
[13–16]. So far, however, the analysis of transverse packets
was rather limited [11].

We found that transverse packets are very interesting
and lead to the unexpected and counterintuitive result of
repulsive transverse forces at high energies—both for
dielectric and metal surfaces. This discovery is illustrated
in Fig. 1. The center of a charge bunch, with dimensions
Lb, Wb, and Hb in its own reference frame and a total
charge q, moves in vacuum (z > 0) at a distance z0 from

the flat surface of a solid with a dielectric function �ð!Þ.
The bunch velocity, of magnitude v, corresponding to

� ¼ ð1� v2=c2Þ�1=2, is parallel to the surface (x axis).
The evaluation of the electromagnetic field created by

the packet is based on Maxwell’s equations: the treatment
is rather tedious and can be found in more detail in the
Supplemental Material [17]. The fields are written as
Fourier series, i.e., as sums of electromagnetic waves
with amplitudes and phases depending on the k-vector
components.
We start with the simple case of a lossless dielectric with

�ð!Þ ¼ � ¼ const. The transverse k-vector components in
vacuum (1) and in the dielectric (2) are

kz1ðk; c Þ ¼ ik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2c

�2
þ sin2c

s
;

kz2ðk; c Þ ¼ ik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2�Þcos2c þ sin2c

q
;

(1)

where � ¼ v=c, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, and c ¼ arctanðky=kxÞ;

here, kx and ky are the k-vector components parallel to

the surface. From Eq. (1), the waves in vacuum are always
evanescent; i.e., kz1 is imaginary: a charge bunch moving
with a constant velocity parallel to a flat vacuum-dielectric
interface cannot emit radiation in vacuum.
However, it can emit propagating Čerenkov waves in

the dielectric. When the Čerenkov condition �> 1=
ffiffiffi
�

p
[or � >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð�� 1Þp

] is satisfied, kz2 can be either real or
imaginary. It is real if the quantity under the square root in
Eq. (1) is negative, leading to the well-known Čerenkov
cone:

cosc c ¼ 1

�
ffiffiffi
�

p : (2)
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Below the critical angle, c c, the Čerenkov radiation
propagates in the dielectric away from the interface.
Above the critical angle, kz2 is imaginary and the waves
in the dielectric decay with the distance from the interface.
If �< 1=

ffiffiffi
�

p
, kz2 is imaginary for all angles and there are

only evanescent waves.
Based on the above discussion, we can consider two

contributions to the total interaction between the bunch and
the dielectric: one from evanescent waves and the other
from propagating (Čerenkov) waves. We calculated the
electromagnetic field in the center of the packet using the
charge-normalized Lorentz force

F ¼ ðEþ v�BÞðx¼vt;y¼0;z¼z0Þ; (3)

where z0 is the distance from the interface to the bunch
center.

Within the packet, we assume a homogeneous charge
distribution. For a line charge with infinite transverse size,
the field defined above is proportional to the force per unit
length. For a finite-size line charge, the calculated field
reflects the force applied to the center; treating the detailed
force for each part of the line is beyond the scope of this
work, although the corresponding complications do not
affect our qualitative conclusions.

The calculations concern the x (longitudinal) and
transverse-z F field components. The transverse-y compo-
nent is zero due to symmetry.

First, we show the results for a point particle (i.e., z0 �
Lb, Wb, Hb); we selected � ¼ 3. Fig. 2 (top) presents the
transverse field as a function of energy. The result
is normalized with respect to the absolute value of the
static field (� ¼ 1), which equals ½ð�� 1Þ=ð�þ 1Þ��
½q=ð16��0z20Þ�, where q is the particle charge. This case

was already studied in Ref. [10]; however, since the results
provide the background for the rest of our analysis, we
summarize here the main findings.

The force contribution from evanescent waves in the
dielectric is attractive (negative) for all energies. The con-

tribution from Čerenkov waves is of course zero for � <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð�� 1Þp

. For � >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=ð�� 1Þp

, the figure shows that the

Čerenkov-related force contribution is not always attrac-
tive but becomes repulsive above �� 4:5.
Schieber and Schächter [10] used the language of quan-

tum mechanics to explain this point. Čerenkov photons
moving away from the interface carry a certain transverse
momentum. For low energies, the dielectric can accom-
modate this momentum, whereas, for high energies, the
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FIG. 2. Transverse field for a point charge (top), for a line
charge with Wb ¼ 10z0 (middle), and for a line charge with
infinite transverse size (bottom) moving parallel to the surface of
a dielectric with � ¼ 3. The interaction is divided into the
Čerenkov (dashed line) and evanescent (dotted line) contribu-
tions. The thick solid gray line in the top and middle panels is
the total interaction. For the line charge with infinite transverse
size, the two contributions occur in different energy ranges. �c

marks the transition from a total attractive to a total repulsive
interaction.

FIG. 1. The geometry of our analysis for a charge packet
moving parallel to the surface of a solid.
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particle has to balance it, which gives a repulsive
interaction.

At low energies, the total transverse force is dominated
by the attractive component and reaches a maximum
above the Čerenkov condition. For high energies, the
force decreases and approaches zero as q=ð16��0z20�Þ,
independent of �. Although the Čerenkov contribution
becomes repulsive, the total force remains attractive at all
energies.

Are these results for point charges also valid for charge
distributions? This is our discovery: there are qualitative
differences, and the total force can be made repulsive
by manipulating the geometry of the charge packet.
Equation (1) hints how: repulsive Čerenkov interaction
comes from propagating waves with c < c c. Above c c,
the waves are evanescent and contribute to the attractive
interaction. If one could suppress the evanescent waves,
this would decrease the attractive interaction, even to the
point of producing a repulsive total interaction.

How can this be accomplished? The Fourier transform
of the charge density determines the wave-vector range
(see the Supplemental Material [17] for details). From the
Fourier transform properties, we can estimate this range
simply as �kx � �=Lb and �ky � 1=Wb (the � factor is

present due to length contraction of the bunch along the x
axis in the laboratory frame). The maximum wave-vector
angle is therefore arctan½Lb=ð�WbÞ�. By increasing the
ratio of the transverse to the longitudinal size of the bunch,
we can suppress large-angle contributions for all � values.
The range of angles is reduced to zero when the point
charge is replaced with a line charge of infinite transverse
size (Wb ! 1).

This formal explanation has a simple physical ground:
the waves at oblique-incidence angles destructively inter-
fere due to the symmetry of the problem. The interference
is constructive only in the forward and backward direc-
tions, which, above the Čerenkov condition, give rise only
to the Čerenkov part of the interaction.

This point is shown in Fig. 2 (bottom), where we plot the
transverse field for a line charge with infinite transverse
size moving parallel to a dielectric with � ¼ 3. The ana-
lytical solution for this case is

Fz ¼
8><
>:

�l

4��0z0

�2ð��1Þ��ð�þ1Þþ2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���2ð��1Þ

p
�ð�2þ�Þð��1Þ for � <

ffiffiffiffiffiffiffi
�

��1

p
�l

4��0z0

�2ð��1Þ��ð�þ1Þ
�ð�2þ�Þð��1Þ for � >

ffiffiffiffiffiffiffi
�

��1

p

(4)

Fx ¼
8<
:
0 for � <

ffiffiffiffiffiffiffi
�

��1

p

� �l

2��0z0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ð��1Þ��

p
ð�2þ�Þð��1Þ for � >

ffiffiffiffiffiffiffi
�

��1

p
;

(5)

where �l is the linear charge density. By reducing the
availability of large-angle wave vectors, one can com-
pletely eliminate the evanescent attractive interaction at
energies above the Čerenkov condition. The interaction

becomes repulsive for energies above a critical value given

by �c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð�þ 1Þ=ð�� 1Þp

. The repulsive force increases
with energy, goes through a maximum, and then decreases
as 1=� for high energies, independent of �.
The above picture is strictly valid if Wb � z0. Finite-

size effects are shown in Fig. 2 (middle), reporting the
field for Wb ¼ 10z0. The evanescent attractive interaction
is not zero above the Čerenkov condition as for an infinite
line; however, it is weaker than for a point charge, and the
repulsive Čerenkov interaction eventually prevails. The
critical energy increases with respect to the infinite line
charge. We also performed calculations for additional
cases of packets with nonzero length and height. The fields
show rather similar trends, provided that Hb, Lb <Wb;
even if Lb is comparable to Wb, the evanescent waves are
suppressed due to length contraction and the total inter-
action can still become repulsive.
The effect of a finite bunch size is further illustrated in

Fig. 3, where we plot the critical energy as a function of the
z0=Wb ratio. For low ratios, the critical energy does not
change significantly. WhenWb becomes comparable to z0,
the critical energy strongly increases. This is reasonable
since the dielectric ‘‘sees’’ the bunch as a point particle for
high z0=Wb.
At this point, we must raise a fundamental question.

Are the above effects caused only by the packet geometry,
or are they also influenced by the nature of the solid?
Specifically, can they be extended from a lossless dielectric
to a metal? To address this issue, we calculated the field
for a point charge and a line charge with infinite transverse
size moving parallel to the surface of a Drude metal, Fig. 4,
with values of the plasma frequency !p and the damping

coefficient �0 corresponding to copper.
For the point charge, the field magnitude decreases as

the energy increases; it specifically goes as 1=� for low and
high energies and deviates slightly for intermediate ener-
gies. Numerical analysis shows that (in the range of interest
z0 � 1 �m–1 mm and in the vicinity of!p) the deviations
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FIG. 3. Critical energy, above which the interaction of a trans-
verse line charge with the surface of a dielectric (� ¼ 3) becomes
repulsive, plotted as a function of the z0=Wb ratio.
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occur close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!pz0=c

q
. Such deviations can be under-

stood in the following way. The maximum frequency
excited in the metal is approximately!max ¼ �v=z0 (since
for a relativistic point charge the electric and magnetic
fields are non-negligible only in a cone defined by the
angle 1=�). For small � values, only low frequencies are
excited and the material behaves similarly to a dielectric
with � ! 1. The field, therefore, is given by the (relati-
vistic) image charge model, as q=ð16��0z20�Þ. When �
increases, higher frequencies are excited in the metal and
the real part (absolute value) of its dielectric function
decreases. The metal starts behaving like a dielectric
with finite �, and the field deviates from the 1=� behavior.
As � increases further, the image charge model clearly
does not apply anymore; however, the field again exhibits
the 1=� trend. This is not surprising since this behavior is
also observed for a dielectric as � ! 1, independent of �.

The field magnitude of Fig. 4 for a line charge with
infinite transverse size exhibits the above qualitative behav-
ior only for low energies. At high energies, the interaction
becomes repulsive, as for a dielectric. The critical transition

energy is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!pz0=c

q
. This demonstrates that

the repulsive interaction is indeed caused by geometry and
that it also occurs for metals.
Note that the transition from a total attractive to a total

repulsive interaction would not occur for a metal if the
real part (absolute value) of its dielectric function would
not decrease with frequency. The transverse field for this
particular case can be calculated from Eq. (4) by letting
� ! 1. This reproduces the interaction obtained with the
(relativistic) image charge method, which is always attrac-
tive. In essence, using the image charge method is wrong
since it unrealistically neglects the frequency dependence
of the dielectric function.
What about the decelerating longitudinal field? We have

seen [2] that for a point charge it asymptotically appro-
aches a finite value whether the material is a dielectric or
a metal, and that for a dielectric this value is twice the
static image charge force, �2q=ð16��0z20Þ. Equation (5)

shows that, for a line charge, as � ! 1, the longitudinal
field actually decreases as 1=�. For a metal surface, we
found that the longitudinal field also asymptotically
approaches zero.
These results could be interesting, e.g., for particle

accelerators. When the charge bunch gets close to a sur-
face, it produces longitudinal and transverse wakefields
that can severely affect the beam properties [18]. This
phenomenon persists at high energies. Our findings suggest
that a manipulation of the packet geometry could alleviate
this undesired effect.
In general terms, our results indicate that the largely

neglected effects of the charge distribution geometry merit
a more extensive and detailed analysis. This is true not only
for fundamental reasons but also for the possible practical
consequences.
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L. Schächter are gratefully acknowledged. The research
is supported by the Fonds National Suisse (FNS) de la
Recherche Scientifique and by the CIBM.

[1] B.M. Bolotovskii, Sov. Phys. Usp. 4, 781 (1962). This
paper is a review of the theory of Čerenkov radiation in
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