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1IPCF-CNR c/o Dipartimento di Fisica—Università La Sapienza, P. A. Moro 2, 00185 Roma, Italy
2ISC-CNR c/o Dipartimento di Fisica—Università La Sapienza, P. A. Moro 2, 00185 Roma, Italy
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We experimentally investigate the interplay between spatial shock waves and the degree of disorder

during nonlinear optical propagation in a thermal defocusing medium. We characterize the way the shock

point is affected by the amount of disorder and scales with wave amplitude. Evidence for the existence of a

phase diagram in terms of nonlinearity and amount of randomness is reported. The results are in

quantitative agreement with a theoretical approach based on the hydrodynamic approximation.
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Laser beams propagating in nonlinear media undergo
severe distortions as the power is increased: spreading due
to diffraction can be progressively reduced through self
narrowing, up to the generation of solitons [1,2] and dis-
sipative and dispersive shock waves (SWs) [3–8], thus
fostering the formation of a variety of nonlinear waves.
The way these are affected by disorder is a leading main
stream of modern research [9–12]. Attention is given to the
competition between strongly nonlinear and coherent
phenomena, and their frustration due to randomness and
scattering; recent theoretical investigations deal with gen-
eral frameworks described by ‘‘phase diagrams’’ in terms
of two parameters: the amount of nonlinearity and the
amount of disorder [13]. However, no direct experimental
nonlinearity-disorder phase diagram has been reported.

The case of SWs is specifically relevant [14–16], as they
represent a strongly nonlinear and coherent oscillation (the
undular bore) [8,17–20] and are expected to be strongly
affected (and eventually inhibited) by disorder, at variance,
e.g., with solitons, which can survive a certain amount of
randomness (see, e.g., Refs. [21,22]). This leads to the
direct opposition between the two effects: on one hand
increasing the nonlinearity favors the shock formation; on
the other hand disorder-induced scattering limits this phe-
nomenon. This is relevant in colloidal systems [8,23–27]
where disorder is unavoidable, as well as in out-of-
equilibrium photorefractive nonlinearities [28] and optical
fibers [5,29], and also in Bose-Einstein condensation
[30–32] and acoustics [33].

In this Letter, we report direct experimental evidence of
the competition between SWs and disorder, and support
our experiments by a theoretical model based on the hydro-
dynamic approximation. We measure the first phase dia-
gram (where the order parameter is the position of the
formation of the shock) for nonlinear waves in terms of
disorder and nonlinearity, and characterize the scaling laws
for the random SWs formation and propagation.

Experiment.—We use dispersions of silica spheres
of diameter 1 �m in 0.1 mM aqueous solutions of

rhodamine-B displaying a thermal defocusing effect due
to partial light absorption [14,16,34,35]. To vary the degree
of disorder several silica concentrations are prepared, rang-
ing from 0:005 w=w to 0:03 w=w, in units of weight of
silica particles over suspension weight. A continuous-wave
laser at wavelength � ¼ 532 nm is focused on the input
facet of the sample (beam waist ’ 10 �m). To detect light
transmitted at the exit of the samples, the aqueous solutions
are put in 1 mm� 1 cm� 3 cm glass cells with propaga-
tion along the 1 mm vertical direction (parallel to gravity)
to moderate the effect of heat convection. Transverse im-
ages of the beam intensity distributions are collected
through an objective and recorded by a 1024� 1392 pixel
CCD camera. All measurements are performed after
the temperature gradient reaches the stationary state and
the particle suspensions are completely homogeneous. The
loss mechanisms in our samples are absorption and scat-
tering. The measured loss length (absorptionþ scattering)
is L ’ 1:6 mm for pure dye solution and L ’ 1:2 mm for
the sample with the highest concentration (and hence high-
est losses). These values are obtained by fitting with expo-
nential decay the beam intensity vs propagation distance Z.
The fact that L is always greater than the position of the
shock point Zs (measured below) allows us to neglect
losses at a first approximation in our theory. In addition,
we find that the scattering mean free path is of the order of
millimeters for all the considered samples.
In Fig. 1 we show images of the transmitted beam

(on the X-Y transverse plane) for different input laser
powers P and various concentrations c. The profiles dis-
play postshock rings with outer rings being more intense
than the inner ones, as is typical for dispersive SWs from
Gaussian beams [14]. The number and the visibility of the
oscillations increase with P and decrease with c, evidenc-
ing that SWs are sustained by nonlinearity and inhibited by
disorder.
We then investigate the onset of the shock along the

beam propagation direction: we use 1 cm� 1 cm� 3 cm
glass cells (propagation along 1 cm), and top images are
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collected through a microscope and recorded by the CCD
camera. The effect of disorder on SWs along beam propa-
gation is reported in Fig. 2, where collected images of the
transverse distribution of the beam intensity vs Z for differ-
ent input power P and silica concentrations c are shown.
In accord with Fig. 1, shock inhibition by disorder in Fig. 2
is evidenced by the reduction of the beam aperture and the
disappearance of the undular bores.

We identify the point of shock formation ZS as the Z
corresponding to the maximum of steepness of the inten-
sity profiles (details in Ref. [16]). We follow this procedure
for all images and we report in Fig. 3(a) ZS vs P for
different concentrations c. Two effects are evident:
(1) for increasing power P, ZS decreases, corresponding
to the speed up of the shock formation caused by the
augmented nonlinearity; (2) for increasing concentration
c, ZS increases, as disorder delays shock formation up
to its total cancellation observed for c ¼ 0:030 w=w (star

symbols). The plateau at low P indicates that shock is not
occurring, as the steepness of the profiles increases with Z
but does not have any maximum in the observation window
Lo ’ 1 mm. In this regime ZS is not the position of the
peak of the steepness but that of the highest steepness
available in the observable Z range. We define the value
of P at which ZS starts to decrease as the threshold power
between shock and nonshock regimes and map the phase
diagram in Fig. 3(b).
Theory.—In order to theoretically analyze the experimen-

tal results, following previously reported analyses [14,29],
we use the hydrodynamic approximation. We start from the
paraxial wave equation for the field complex envelope A, in
the presence of a disordered local Kerr medium with refrac-
tive index perturbation �n ¼ n2I þ �nRðX; Y; ZÞ by rela-
tive to the bulk index n0, with I ¼ jAj2 the optical intensity,
n2 < 0 the Kerr coefficient and �nRðX; Y; ZÞ a random
perturbation,

2ik
@A

@Z
þr2

X;YAþ 2k2
�n

n0
A ¼ 0: (1)

In Eq. (1), k ¼ 2�n0=�, and we neglect spatial nonlocality
and losses, because they do not qualitatively affect the
scenario (as will be reported elsewhere). The corresponding
dimensionless equation for the normalizedfieldc ¼ A=

ffiffiffiffi

I0
p

,
with I0 the input peak intensity, is
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where ðx; yÞ ¼ ðX; YÞ=w0, z ¼ Z=L, L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

LdLnl

p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Lnl=Ld

p

, Ld ¼ kw2
0, Lnl ¼ n0=ðkjn2jI0Þ, and UR ¼

�nR=n2I0 is the ratio between the random index perturbation
and the nonlinear one (w0 ffi 10 �m). Because of the huge
number of particles randomly distributed within the optical
beam and the low index contrast (the refractive index is 1.46
for silica and 1.33 for water), nRðx; y; zÞ can be taken as a
random dielectric noise mainly acting on the phase of the
propagating beam; below we show that such an assumption
allows us to retrieve theoretical results in quantitative agree-
ment with experiments. In the hydrodynamic limit � ! 0
(Lnl � Ld), the propagation of the field intensity can be
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FIG. 2 (color online). Beam propagation as observed from top
fluorescence emission for different input power P and particle
concentration c: (a) P ¼ 8 mW, c ¼ 0, (b) P ¼ 450 mW,
c ¼ 0, (c) P ¼ 8 mW, c ¼ 0:017 w=w, (d) P ¼ 450 mW, c ¼
0:017 w=w (e) P ¼ 8 mW, c ¼ 0:030 w=w, (f) P ¼ 450 mW,
c ¼ 0:030 w=w.
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FIG. 3 (color online). (a) Measured shock point ZS vs P for
various c; (b) disorder-power phase diagram with shock and
nonshock regimes obtained from the data in panel (a): the dots
correspond to the threshold powers, the dashed line and the dot-
dashed line are the boundaries as estimated by the theory.
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FIG. 1 (color online). Images of transmitted intensity for differ-
ent input power P and particle concentration c: (a) P ¼ 5 mW,
c ¼ 0, (b)P ¼ 400 mW, c ¼ 0, (c)P ¼ 5 mW, c ¼ 0:017 w=w,
(d) P ¼ 400 mW, c ¼ 0:017 w=w (e) P ¼ 5 mW, c ¼
0:030 w=w, (f) P ¼ 400 mW, c ¼ 0:030 w=w. Superimposed
curves show the measured section of the intensity profiles.
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separated by that of the beam phase; this results in the
equation of motion for the phase chirp identical to that of a
unitary mass particle (due to the cylindrical symmetry of the
system we limit to the x-z variables):

d2x

dz2
¼ �dU

dx
� dUR

dx
¼ � dU

dx
þ �R: (3)

In Eq. (3) U ¼ expð�x2=2Þ is the deterministic potential
from the nonlinear part due the Gaussian beam profile.
�R ¼ �dUR=dx is taken as aLangevin force thatwe assume
with Gaussian distribution, such that h�RðzÞ�Rðz0Þi ¼
�2�ðz� z0Þ, with the strength of disorder measured by

� ¼ hðdUR=drÞ2i1=2 ffi h�n2Ri1=2=jn2jI0, and the brackets
denoting statistical average. We stress that in the following
we solve Eq. (3) for several values of x taking for each of
them an independent realization of the noise �RðzÞ; this
allows us to neglect the dependence of �R on x. We stress
that for reasons of symmetry the disorder in the two trans-
verse directions are independent. The simplest and effective
theoretical approach is to consider a one-dimensional reduc-
tion. Because of the disorder averaging cylindrical symmetry
is preserved, as is also experimentally demonstrated.

In Figs. 4(a) and 4(b), we show several of these trajecto-
ries resulting from initial uniformly distributed position in
the x axis and zero initial velocity v ¼ dx=dz, as obtained
by a stochastic Runge-Kutta algorithm [36]. Upon propa-
gation the particles collide and, in the absence of disorder,
the shock is signaled by the coalescence of multiple trajec-
tories [Fig. 4(a)]; in the phase space of v and x [Fig. 4(c)],
these correspond to the folding of the velocity profile into a
multivalued function when increasing z, which induces
the wave-breaking phenomenon. In the presence of disor-
der, the particles tend to diffuse, as is evident from their
trajectories [Fig. 4(b)] and in the phase space [Fig. 4(d)];
correspondingly, the propagation distance before their

collisions is greater for their random walk and the shock
is delayed in the z direction.
Figures 5(a) and 5(b) show the numerically obtained

histograms of the particle positions at various propagation
distances. If compared with the ordered case in Fig. 5(a),
disorder induces a spreading of the particle distribution.
We extract the position of the shock zs ¼ zsð�Þ as that
approximately corresponding to the maximum of the his-
togram (precisely, as the mean value among the positions
for which the histogram is above 90% of its maximum, to
limit fluctuations). This allows us to determine zs for
various amounts of disorder � [in the ordered case zsð0Þ ffi
2:5]. Figure 5(c) shows zsð�Þ vs disorder degree for 103

particles and demonstrates that the shock process is
delayed by disorder.
As discussed above, in the absence of disorder, shock

appears in the experiments only above a threshold power
[see Fig. 3(a)]: from a theoretical point of view this thresh-
old arises from the fact that the hydrodynamic model
(Lnl � Ld, corresponding to � ! 0) is valid only at high
nonlinearity; hence, no shock is expected at low power.

Moreover, in the hydrodynamic limit the position z ¼
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn2jP=�
p

=w2
0 and the shock position Zs scales as

1=
ffiffiffiffi

P
p

, as experimentally investigated in Ref. [16].
Following our theoretical approach, this scaling is main-
tained in the disordered case and the shock position is

delayed, such that Zsð�Þ ¼ zsð�Þw2
0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijn2jP=�
p

; zs is com-

pared in Fig. 5(c) with our experimental results (jn2j ¼
2� 10�12 m2 W�1) revealing quantitative agreement.
Discrepancies between experimental and theoretical zs
are ascribed to the several adopted simplifying assump-
tions in the latter.
In addition, from the theory another threshold arises,

corresponding to the existence of a critical value for the
amount of randomness above which no shock is obtained.
Indeed disorder becomes dominant with respect to
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FIG. 4 (color online). Trajectories of colliding particles form-
ing shock vs z: (a) without disorder (� ¼ 0) and (b) for � ¼ 0:1;
(c) shock profile in the phase space for � ¼ 0 and (d) for
� ¼ 0:1 (z varies in the range [0, 3]).
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FIG. 5 (color online). Theoretical histograms of particle posi-
tions for � ¼ 0 (ordered case, panel a) and for � ¼ 0:2 (panel
b); (c) theoretical normalized shock position zs vs amount of
disorder � (black continuous line) and comparison with the
measured zs vs concentration c (red squares).
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nonlinearity when UR is greater than the deterministic part
U, such that the hydrodynamic model in Eq. (3) is no
longer valid. More precisely, Eq. (3) holds true as long as
� & 1; above this value no shock is expected. As U is of

the order of unity, this corresponds to hU2
Ri1=2¼

h�n2Ri1=2=jn2jI0&1, with h�n2Ri1=2¼c�H2OðnSiO2
�

nH2OÞ=�SiO2
, with nSiO2

(nH2O) and �SiO2
(�H2O) the refrac-

tive index and the density of SiO2 (H2O), respectively. That
is, no shock is expected when the random index perturba-
tion �nR becomes comparable with the nonlinear pertur-
bation n2I, such that material fluctuations are so
pronounced that the nonlinear effect is totally masked. In
our experiments we have jn2jI0 ffi 10�3, and we have that

the condition h�n2Ri1=2 ffi jn2jI0 ffi 10�3 is found for a
concentration of c ffi 0:03 w=w [see Fig. 3(b)]. In addition,

the other boundary line in the phase diagram scales as
ffiffiffiffi

P
p

[dot dashed in Fig. 3(b)], as retrieved from the condition
Zsð�Þ< Lo.

Conclusions.—By the direct visualization of a laser beam
propagating in a liquid random nonlinear system and by
imaging the transmitted light at the exit of the samples, we
show that the gradual increase of disorder hampers shock
wave formation, up to its total inhibition. Such a transition
has been quantitatively characterized and results in the first
directmeasurement of the phase diagram of nonlinear propa-
gation in terms of disorder and nonlinearity, as is also
supported by a theoreticalmodel based on the hydrodynamic
approach. These experiments open the way to further inves-
tigations concerning the interplay between disorder and
nonlinearity, such as the identification of glassy and super-
fluid phases of light and related phenomena.
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