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We present a method for accurate determination of atomic transition matrix elements at the 10�3 level.

Measurements of the ac Stark (light) shift around ‘‘magic-zero’’ wavelengths, where the light shift

vanishes, provide precise constraints on the matrix elements. We make the first measurement of the

5s� 6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros

through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing

theoretical and experimental data, we find 0:3235ð9Þea0 and 0:5230ð8Þea0 for the 5s� 6p1=2 and

5s� 6p3=2 elements, respectively, an order of magnitude more accurate than the best theoretical values.

This technique can provide needed, accurate matrix elements for many atoms, including those used in

atomic clocks, tests of fundamental symmetries, and quantum information.
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Precise knowledge of atomic transition strengths is
important in many current areas of research, including the
development of ultraprecise atomic clocks [1–3], studies
of fundamental symmetries [4,5] and degenerate quantum
gases [6], quantum information [7,8], plasma physics [9],
and astrophysics [10,11]. For example, one of the largest
contributions to the uncertainty budget of atomic clocks is
the uncertainty in the blackbody radiation (BBR) shift
[2,12]. The BBR shift is calculated from the difference in
the electric-dipole polarizabilities between the clock states
[13], and its accuracy is currently limited by uncertainty
in atomic transition matrix elements. The dynamic correc-
tion to the BBR shift can also be determined accurately if
the relevant matrix elements are known [1]. Studies of
fundamental symmetries, such as atomic parity violation,
need transition matrix elements to evaluate parity-violating
amplitudes and vector transition polarizabilities [4,5].
Accurate atomic theory can also be indispensable to the
design and interpretation of experiments, where direct mea-
surement of all relevant parameters is infeasible. More
complicated atoms, such as Er [14], Dy [15], and Ho [16]
have recently become of interest, and development of new
theoretical methods must be supported by the existence of
high-precision experimental benchmarks.

Transition matrix elements can be difficult to measure
or calculate accurately. State-of-the-art theory predictions
are often limited to a few percent uncertainty, and the
presently available experimental techniques typically mea-
sure matrix elements accurately only for one or two of
the lowest transitions. To date, the most accurate determi-
nations of atomic transition matrix elements are through
excited state lifetime measurements or photoassociation
spectroscopy [17]. The former is limited by uncertainty
in branching ratios when multiple decay paths exist. As a

result, although the 6p lifetime of rubidium was measured
to 1%, no matrix elements were reported [18]. The latter
requires species with purely long-range molecular excited
states where molecular theory is sufficiently well known to
extract atomic properties. In principle, transition matrix
elements can be determined from the ac polarizability � by
measuring the ac Stark (light) shift of an atom exposed
to light of known intensity. However, unlike dc Stark shift
measurements, where the applied electric field can be
determined geometrically [2], it is difficult to accurately
determine the optical intensity, limiting the efficacy of this
approach. (Lifetime measurements avoid this calibration
challenge by using a well known field, the vacuum.) For
atoms with spin-dependent vector light shifts and two long-
lived states, rf spectroscopy was used to accurately deter-
mine the ratio of two vector light shifts [19,20], which
when combined with theory constrained matrix elements
[21]. New techniques are needed to improve accuracy,
extend the range of measurable matrix elements, and pro-
vide benchmarks for theory.
In this Letter, we present a widely applicable method,

recently suggested in Ref. [22], for constraining matrix
elements at the 10�3 level through direct measurement of
light shifts near magic-zero wavelengths (�zero), where the
combined light shift from all transitions cancels [23].
These �zero wavelengths are distinct from the ‘‘magic’’
wavelengths used in optical clocks, where the light shift
is identical for two states [24]. We measure small light
shifts through diffraction off a standing wave, amplifying
the diffracted populations by constructively interfering the
effect of up to np ¼ 15 pulses, resulting in an n2p enhance-

ment in the diffracted fraction. We make the first experi-
mental determination of the rubidium 5s� 6p1=2 and

5s� 6p3=2 electric dipole matrix elements, to an accuracy

PRL 109, 243003 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

14 DECEMBER 2012

0031-9007=12=109(24)=243003(5) 243003-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.109.243003


of 0.3%, 10 times more accurate than the best theoretical
values [22]. Implementation of our measurement technique
could provide much-needed data to constrain the BBR shift
for optical lattice clocks.

Measuring light shifts near a �zero to constrain matrix
elements has a number of advantages over the approaches
described earlier. It is insensitive to absolute calibration of
the applied optical field, requiring only a stable intensity.
Scalar light shifts are present for all atomic states, and �zero

points are found near every atomic transition. That prox-
imity increases sensitivity to the matrix element of the
nearby transition in addition to decreasing sensitivity to
uncertainty in hard-to-calculate theoretical values. Most
importantly, ground (or metastable) state light shifts
depend only on matrix elements directly to higher excited
states, not on the coupling of the excited states to other
states. Light shift measurements are thus independent of
the branching ratios that limit the lifetime approach.

We used this technique to measure the transition matrix
elements between the ground 5s1=2 and 6p1=2, 6p3=2 states

in 87Rb by measuring the light shift as a function of � near
the two �zero points neighboring the 6p states (see the inset
in Fig. 1). We applied a sequence of standing wave (optical
lattice) pulses to a Bose-Einstein condensate (BEC) con-
taining ’ 3:5� 104 jF ¼ 1; mF ¼ �1i atoms with no dis-
cernible thermal fraction, produced in a hybrid optical and
magnetic trap similar to Ref. [25]. At the end of the pulse
sequence, we suddenly turn off the trap and measure the
atom population in each diffracted order from an absorp-
tion image after 40 ms time of flight. By intentionally using
a small condensate, we can neglect atom-atom interactions
and limit the optical depth so that all orders in the image
are unsaturated. The measured population fractions, nor-
malized to the total number in each image, are insensitive
to small fluctuations in total atom number.

The lattice light is provided by a frequency-doubled
diode laser and is tunable between 419 and 424 nm. We
measure thewavelength to 50 fm (90MHz) accuracy with a

wave meter, calibrated to the known 5s� 6p transition
frequencies [26]. We form the lattice by reimaging a retro-
reflected beam on the atoms with an incident power of
60–120 mW and a waist of ’ 110 �m. The lattice beam
intensity varies only a few percent across the BEC, whose
Thomas-Fermi radius is 18 �m transverse to the beam.
Lattice alignment is performed at 421.700 nm where the
light shift is reasonably large, ’ 7ER [where the recoil
energy ER ¼ @

2k2=ð2MÞ for wave vector k ¼ 2�=�, lattice
laser wavelength �, and atomic massM]. The input beam is
carefully aligned to the BEC (with the retroreflected beam
blocked) by minimizing the transverse displacement of the
BEC induced by the beam. The retroreflected beam is then
aligned by maximizing diffraction efficiency. Lattice depth
measurements at the 5% uncertainty level are consistent
with no drift during a data set, and the alignment is typically
stable from day to day.
To minimize wavelength-dependent steering of the laser,

we couple the light through an optical fiber and focus the
output of the fiber onto the BEC. We measured the residual
steering after the fiber by monitoring the position of the
beam 1 m downstream from the fiber tip. The observed
deflection of the beam was <30 �rad, which corresponds
to at worst a 1% decrease in average beam intensity at
the BEC and is included in our uncertainty analysis.
Additionally, we monitor the power in each pulse sequence
with a photodiode to account for different laser powers.
Lattice polarization also affects the measured light shift.

Linearly polarized light has a nearly scalar light shift [27],
but elliptical polarization will have both vector and scalar
light shifts for atoms with jmFj> 0 [28], shifting the
position of �zero. Although we used a Glan-laser polarizer
to establish a clean linear polarization, analyzing the light
after the chamber showed that the vacuum windows’ slight
birefringence created ’ 1% ellipticity. To account for the
possible systematic shift of �zero, we measured the light
shift for two orthogonal, linear input polarizations, defined
as S andPwith respect to the plane of the last mirror before
the chamber. By symmetry, the induced ellipticity from
the window is opposite for the two input polarizations.
We calculated that averaging the S and P measurements
cancels the contribution of the vector light shift to a
negligible 10 fm shift in �zero.
Optical lattice depths (light shifts) are commonly mea-

sured by observing the population oscillations between
momenta 2l@k, for integer l, as a function of lattice pulse
duration (outside the Raman-Nath regime). For lattice
depths below 1ER, the diffracted populations are small,
and the oscillation period saturates to h=ð4ERÞ. At
0:05ER, less than 0.008%of atoms are diffracted for a single
lattice pulse. In order to increase the signal, we employ a
multipulse diffraction sequence that coherently adds the
effect of each pulse, similar to quantum resonances in
delta-kicked rotors [29,30]. For weak lattices where only
orders with jlj � 1 are populated, a Bloch sphere picture
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FIG. 1 (color online). Calculated polarizability of Rb (atomic
units of a30). The vertical dashed lines are at the np-5s tran-

sitions. Arrows indicate the positions of the relevant �zero points.
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provides intuition [31] (Fig. 2). For initially stationary
atoms, the jlj ¼ 1 orders are equivalent and can be repre-
sented as a single state, which along with the l ¼ 0 state are
the two poles of the Bloch sphere. Free evolution corre-
sponds to precession about the vertical axis with period
h=ð4ERÞ, called the Talbot time [32]. During a weak lattice
pulse, the precession axis is tilted by an angle proportional
to the lattice depthwith essentially the sameh=ð4ERÞ period
[33]. Alternating lattice and free evolution with duration
h=ð8ERÞ (one-half precession period, ’ 9:75 �s at 423 nm)
efficiently increases the diffracted population (see Fig. 2).

To accurately determine the lattice depths from the mea-
sured populations, we numerically diagonalized the lattice
Hamiltonian (see, e.g., Ref. [31]) in the plane wave basis
including orders up to jlj ¼ 3. From this we calculate the
first-order diffracted population fraction P1 as a function of
pulse number np and lattice depth V0 in units of ER. In the

weakly diffracting limit (npV0 � 4), P1 / ðnpV0Þ2, show-
ing that multiple weak pulses are equivalent to one pulse np
times stronger. Inverting the numeric result forP1, we extract
the lattice depth V0ðnp; P1Þ from the measured population

fraction P1 ¼ ðN�1 þ N1Þ=Ntot, with Nl the number of
atoms in the lth order. Figure 3 shows P1 versus np at fixed

V0. The agreement with theory is excellent for np up to 18.

We attribute deviations at larger np to the reduced overlap of

the diffracted components, which travel a significant fraction
of the size of the BEC, during the pulse sequence.

To determine the polarizability �, we extract the raw
lattice depth V0ðnp; P1Þ for each image, which is then

divided by the measured photodiode power for that pulse

sequence. Although this gives j�j, theory is sufficiently
accurate to unambiguously choose the sign. Figure 4 shows
the extracted polarizability as a function of � for four data
sets: two orthogonal polarizations, S and P, near each �zero.
The lattice is aligned before each data set, and measure-
ments after confirm consistent alignment within a data set.
The measurement is repeated up to 20 times at each
wavelength [34], and the error bars in Fig. 4 represent
purely statistical uncertainty of 1�. For both sets around
the 421 nm zero, we used 15 pulses, and for both sets
around 423 nm we used 8 or 11 pulses.
We fit the polarizability to the expression calculated

in [22]:

� / 1

3

X8

n¼5

X3=2

j¼1=2

jdnpj
j2!npj

!2 �!2
npj

þ Ctail þ Ccore; (1)

where the dnpj
� hnpjkDk5si are reduced dipole matrix

elements and ! is the lattice laser frequency. The matrix
elements d6p1=2

and d6p3=2
are fit parameters, while d5p1=2

and d5p3=2
are fixed by the experimental lifetime measure-

ment [35]. The 7p and 8p matrix elements and the con-
tributionCcore, which includes the polarizability of the core
electrons and their interaction with the valence electron,
are calculated in Ref. [22]. We used an improved calcu-
lation of Ctail, the valence contribution for n > 8, with
reduced uncertainty (see Supplemental Material [36]).
Fitting the data to Eq. (1) around a given �zero constrains

the relationship among the parameters in the equation. For
example, the position of the �zero near 421 nm, which is
between the two 6p lines, depends strongly on the ratio of
the 6p matrix elements, R6p ¼ d6p3=2

=d6p1=2
, but more

weakly on their absolute value. On the other hand, the
position of the �zero near 423 nm, which is red-detuned
of both 6p lines, depends more on the average value of the
6p elements (in relation to the 5p elements). Fits around a
single �zero constrain 6p elements with respect to the
non-6p parameters (dnp, Ctail, and Ccore), and the extracted

values are sensitive to their uncertainties. Including data

FIG. 2 (color online). A Bloch sphere representation of the
state vector’s evolution during a pulse sequence. The state vector
starts in j0@ki (north pole). Lattice (free) evolution is shown in
blue (red). Alternating lattice and free evolutions with duration
h=ð8ERÞ, the diffracted population is maximized as described in
the text. This sequence provides 50% population in j �2@ki after
four pulses, corresponding to a lattice depth of ’1ER, much
larger than depths we actually measured.
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FIG. 3 (color online). Diffracted population at fixed laser
power and wavelength. As we vary the number of pulses, the
diffracted population (our signal) initially increases as n2p. The

solid line is the theoretical calculation with only V0 as a fit
parameter. For accurate light shift measurements, we used only
np � 15.
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around multiple �zero points further constrains the fits. For
our case, where the two �zero’s are close to each other, the
effect of the non-6p contributions is essentially identical
for the two zeros, so that simultaneous fits to both zeros
accurately determine R6p, independent of the other pa-

rameters. With the addition of sufficiently accurate theo-
retical and experimental values for the other dnp, Ctail, and

Ccore, we can also accurately determine absolute values for
d6p1=2

and d6p3=2
.

We simultaneously fit the 421 and 423 nm data sets for a
given polarization. Because of possible differences in
alignment and total power between sets, we fit with an
independent amplitude A� around each �zero giving a total
of four fit parameters: A421, A423, d6p1=2

, and d6p3=2
. The fit

values are then averaged for the two polarizations. (The
small difference in extracted matrix elements for S and P
polarization is consistent with the 1% ellipticity discussed
earlier.) Table I summarizes the contributions to our final
uncertainty in our measured values for R6p, d6p1=2

, and

d6p3=2
. The statistical uncertainties in R6p, d6p1=2

, and

d6p3=2
are roughly the same, of the order of 0.1%. As

expected, the contribution of the uncertainties of the other
fixed parameters in Eq. (1) to R6p is negligible, providing a

good comparison with theory, which can predict ratios
more accurately than matrix elements (see Supplemental
Material [36]). The uncertainties in d6p1=2

and d6p3=2
do

depend on the other parameters, and the two largest con-
tributions are from the theoretical uncertainty in the np3=2

component of Ctail and the experimental uncertainty in
d5p3=2

; these contribute at the 0.06% level. To account for

potential lattice alignment drift, we simulated the effect of
a 5% linear drift in the extracted polarizability across a data
set, which resulted in an additional 0.2% uncertainty in
d6p1=2

and 0.1% in R6p and d6p3=2
[37].

Our light shift cancellation measurement technique
accurately determines the ratio of the 6p matrix elements,
with R6p ¼ 1:617ð2Þ. The matrix elements are d6p1=2

¼
0:3235ð9Þ and d6p3=2

¼ 0:5230ð8Þ, in excellent agreement

with the theoretical values (Table I). From these we
determine values for the �zero points: 421.075(2) and
423.018(7) nm.
We have presented the first experimental measurement

of the 5s-6p dipole transition matrix elements in Rb.
Our technique of measuring the relative light shift near
�zero is applicable to many important atoms. At a mini-
mum, such measurements constrain matrix elements
and provide benchmarks needed for atomic theory.
Additionally, applying our measurement technique to
metastable states, such as the 3P0 clock state of Yb or Sr,

could provide information about excited-excited state
matrix elements.
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FIG. 4 (color online). Measured polarizability (arbitrary units)
versus wavelength for two linear, orthogonal input polarizations
S (red, open circles) and P (blue, filled circles). Each point is an
average of up to 20 measurements, shown with 1� statistical
error bars. The solid lines (nearly indistinguishable) are fits to
the expected form [Eq. (1)] with the 6p matrix elements as free
parameters; reduced �2 for the S and P fits is 4 and 11,
respectively [37]. Additionally, we allow a separate amplitude
about each zero to account for different laser power. Fit residuals
are shown at the top.

TABLE I. Absolute uncertainty contributions (in ea0 � 10�4)
for the 5s-6p matrix elements and their ratio (� 10�4). Note the
insensitivity of R6p to uncertainty in the fit parameters. Total

uncertainty is summed in quadrature. Additionally, our 5s-6p
matrix elements are compared to the theoretical values (in ea0).

Contribution �d6p1=2
�d6p3=2

�R6p

Statistical 1.79 1.90 11.1

d5p1=2
0.84 1.34 0.004

d7p1=2
0.08 0.13 0.012

d8p1=2
0.02 0.04 0.003

np1=2 tail 0.56 0.92 0.029

d5p3=2
1.77 2.87 0.007

d7p3=2
0.22 0.36 0.031

d8p3=2
0.06 0.10 0.007

np3=2 tail 2.01 3.28 0.104

Core 1.25 2.05 0.064

Alignment drift 7.82 6.18 19.9

Total 8.62 8.24 22.8

Theoretical value [22] 0.325(9) 0.528(13) 1.624(7)

Our results 0.3235(9) 0.5230(8) 1.617(2)
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