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We present a new approach to consider and include both the perturbative and the nonperturbative

contributions to the multiplicities of gluon and quark jets. Thanks to this new method, we have included

for the first time new contributions to these quantities obtaining next-to-next-to-leading-logarithmic

resummed formulas. Our analytic expressions depend on two nonperturbative parameters with a clear and

simple physical interpretation. A global fit of these two quantities shows how our results solve a long-

standing discrepancy in the theoretical description of the data.

DOI: 10.1103/PhysRevLett.109.242002 PACS numbers: 12.38.Cy, 12.39.St, 13.66.Bc, 13.87.Fh

Collisions of particles and nuclei at high energies usu-
ally produce many hadrons. In quantum chromodynamics
(QCD), their production is due to the interactions of quarks
and gluons, and to test it as a theory of strong interactions,
the transition from a description based in terms of quarks
and gluons to the hadrons observed in experiments is
always needed. The production of hadrons is a typical
process where nonperturbative phenomena are involved.
However, the hypothesis of local parton-hadron duality
assumes that parton distributions are simply renormalized
in the hadronization process without changing their shape
[1], allowing perturbative QCD to make predictions. The
simplest observables of this kind are gluon and quark
multiplicities hnhig and hnhis, which represent the number

of hadrons produced in a gluon and a quark jet, respec-
tively. In the framework of the generating-functional
approach in the modified leading logarithmic approxi-
mation [2], several studies of the multiplicities have been
performed [3–5]. In such studies, the ratio r ¼ hnhig=
hnhis is at least 10% higher than the data or it has a slope
too small. Good agreement with the data has been achieved
in Ref. [6], where recoil effects are included. Nevertheless,
in Ref. [6], a constant offset to be fitted to the quark and
gluon multiplicities has been introduced, while the authors
of Ref. [7] suggested that other, better motivated possibi-
lities should be studied.

In this Letter, we study such a possibility inspired by the
new formalism that has recently been proposed in Ref. [8].
Thanks to very recent new results in small-x timelike
resummation obtained in Ref. [9], we are able to reach
the next-to-next-to-leading-logarithmic (NNLL) accuracy
level. A purely perturbative and analytic prediction has
already been attempted in Ref. [7] up to the third order

in the expansion parameter
ffiffiffiffiffiffi
�s

p
, i.e., �3=2

s , where para-

doxically the quark multiplicity and the ratio are not well
described even if the behavior of the perturbative expan-
sion is very good. Our new resummed results that we
present here are a generalization of what was obtained in

Ref. [7] and also represent a solution to this apparent
paradox.
We consider the standard Mellin-space moments of the

coupled gluon-singlet system, whose evolution in the scale
�2 is governed in QCD by the Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi equations:

�2 d

d�2

Ds

Dg

� �
¼ Pqq Pgq

Pqg Pgg

� �
Ds

Dg

� �
: (1)

The timelike splitting functions Pij can be computed per-

turbatively in the strong-coupling constant:

Pijð!;asÞ¼
X1
k¼0

akþ1
s PðkÞ

ij ð!Þ; as¼ �s

4�
; i;j¼g;q; (2)

where! ¼ N � 1withN being the usual Mellin conjugate
variable to the fraction of longitudinal momentum x. The

functionsPðkÞ
ij ð!Þwith k¼0, 1, 2 appearing in Eq. (2) in the

MS scheme can be found in Refs. [10–12] through next-to-
next-to-leading order (NNLO) and in Refs. [9,13,14]
through NNLL order.
In general it is not possible to diagonalize Eq. (1) bec-

ause the contributions to the splitting function matrix do
not commute at different orders. It is, therefore, convenient
(see, e.g., Ref. [15]) to introduce a new basis, called the
‘‘plus-minus’’ basis where the leading-order (LO) splitting

matrix is diagonal with eigenvalues Pð0Þ
þþ and Pð0Þ��. We

define such a change of basis according to the following
transformation of the gluon and the singlet fragmentation
functions in Mellin space:

Dþð!;�2
0Þ¼ ð1��!ÞDsð!;�2

0Þ��!Dgð!;�2
0Þ;

D�ð!;�2
0Þ¼�!Dsð!;�2

0Þþ�!Dgð!;�2
0Þ;

(3)

where
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�! ¼ Pð0Þ
qqð!Þ � Pð0Þ

þþð!Þ
Pð0Þ��ð!Þ � Pð0Þ

þþð!Þ ;

�! ¼ Pð0Þ
gqð!Þ

Pð0Þ��ð!Þ � Pð0Þ
þþð!Þ :

(4)

The general solution to Eq. (1) can be formally written as

Dð�2Þ ¼ T�2

�
exp

Z �2

�2
0

d ��2

��2
Pð ��2Þ

�
Dð�2

0Þ; (5)

where T�2 denotes the path ordering with respect to�2 and

D ¼ Dþ
D�

� �
: (6)

Now making the following ansatz,

T�2

�
exp

Z �2

�2
0

d ��2

��2
Pð ��2Þ

�

¼ Z�1ð�2Þ exp
�Z �2

�2
0

d ��2

��2
PDð ��2Þ

�
Zð�2

0Þ; (7)

where

PDð!Þ ¼ Pþþð!Þ 0
0 P��ð!Þ

� �
(8)

is the all-order diagonal part of the splitting matrix in the
plus-minus basis and Z is a matrix in the same basis with a
perturbative expansion of the form

Zð�2Þ ¼ 1þ asð�2ÞZð1Þ þOða2sÞ; (9)

we obtain that

Dað!;�2Þ�Dþ
a ð!;�2ÞþD�

a ð!;�2Þ; a¼g;s; (10)

where Dþ
a ð!;�2Þ evolves like a ‘‘plus’’ component,

D�
a ð!;�2Þ evolves like a ‘‘minus’’ component, and

D�
a ð!;�2Þ¼ ~D�

a ð!;�2
0ÞT̂�ð!;�2;�2

0ÞH�
a ð!;�2Þ: (11)

Here T̂�ð!;�2; �2
0Þ is a renormalization group exponent

which is given by

T̂ �ð!;�2;�2
0Þ¼ exp

�Z asð�2Þ

asð�2
0
Þ

d �as
�ð �asÞP��ð!; �asÞ

�
; (12)

with

�ðasð�2ÞÞ � �2 @

@�2
asð�2Þ

¼ ��0a
2
sð�2Þ � �1a

3
sð�2Þ þOða4sÞ: (13)

We recall that

�0 ¼ 11

3
CA � 4

3
nfTR;

�1 ¼ 34

3
C2
A � 20

3
CAnfTR � 4CFnfTR;

(14)

where CA ¼ 3, CF ¼ 4=3, and TR ¼ 1=2 in QCD and nf is

the number of active quark flavors. In Eq. (11), H�
a ð!;�2Þ

are perturbative functions containing off-diagonal terms of
P beyond LO and the normalization factors ~D�

a ð!;�2
0Þ

satisfy the following conditions:

~Dþ
g ð!;�2

0Þ ¼ ��!

�!
~Dþ
s ð!;�2

0Þ;

~D�
g ð!;�2

0Þ ¼
1� �!

�!
~D�
s ð!;�2

0Þ:
(15)

We note that ~D�
a differ from D�

a starting at higher orders
[15]. In the following, we collect the resummed formulas.
Details of the calculation will be presented elsewhere [16].
After the resummation is perfomed for P�� in Eq. (8)

using the results obtained in Refs. [9,17,18], we find for the
first Mellin moment (! ¼ 0) at NNLL:

PNNLLþþ ð! ¼ 0Þ ¼ �0½1� K1�0 þ K2�
2
0 þOð�3

0Þ�;
PNNLL�� ð! ¼ 0Þ ¼ � 8nfTRCF

3CA

as þOða2sÞ;
(16)

where

�0 � PLLþþð! ¼ 0Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2asCA

p
; (17)

and
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��
;
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288

�
1193� 576�2 � 56

nfTR
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�
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��

þ 16
n2fT

2
R

C2
A

�
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� 12
C2
F

C2
A

�
; (18)

with �2 ¼ �2=6. Now we can perform the integration in
Eq. (12) up to the NNLL to obtain that

T̂ NNLL� ð0; Q2; Q2
0Þ ¼

TNNLL� ðQ2Þ
TNNLL� ðQ2

0Þ
; (19)

TNNLLþ ðQ2Þ ¼ exp

�
4CA

�0�
0ðQ2Þ ½1þ ðb1 � 2CAK2ÞasðQ2Þ�

�

� ½asðQ2Þ�dþ ; (20)

TNNLL� ðQ2Þ ¼ ½asðQ2Þ�d� ; (21)

where

b1¼�1=�0; d�¼8nfTRCF

3CA�0

; dþ¼2CAK1

�0

: (22)

We are now ready to define the average multiplicities in
our formalism:

hnhðQ2Þia�Dað0;Q2Þ¼Dþ
a ð0;Q2ÞþD�

a ð0;Q2Þ; (23)
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with a ¼ g; s for the gluon and quark multiplicities,
respectively. From Eqs. (11) and (15) we have that

Dþ
g ð0; Q2Þ

Dþ
s ð0; Q2Þ ¼ � lim

!!0

�!

�!

Hþ
g ð!;Q2Þ

Hþ
s ð!;Q2Þ � rþðQ2Þ; (24)

and

D�
g ð0;Q2Þ

D�
s ð0;Q2Þ ¼ lim

!!0

1��!

�!

H�
g ð!;Q2Þ

H�
s ð!;Q2Þ � r�ðQ2Þ: (25)

Using these definitions, it is convenient to write for the
gluon and quark multiplicities in general:

hnhðQ2Þig¼ ~Dþ
g ð0;Q2

0ÞT̂resþ ð0;Q2;Q2
0ÞHþ

g ð0;Q2Þ
þ ~D�

s ð0;Q2
0Þr�ðQ2ÞT̂res� ð0;Q2;Q2

0ÞH�
s ð0;Q2Þ;

hnhðQ2Þis¼
~Dþ
g ð0;Q2

0Þ
rþðQ2Þ T̂resþ ð0;Q2;Q2

0ÞHþ
g ð0;Q2Þ

þ ~D�
s ð0;Q2

0ÞT̂res� ð0;Q2;Q2
0ÞH�

s ð0;Q2Þ:

(26)

For the coefficients of the renormalization group expo-
nents, we clearly have the following simple relations at
the lowest order in as:

rþðQ2Þ ¼ CA=CF; r�ðQ2Þ ¼ 0;

H�
s ð0; Q2Þ ¼ 1; ~D�

a ð0; Q2
0Þ ¼ D�

a ð0; Q2
0Þ;

(27)

with a ¼ g; s. One would like to include higher-order
corrections to Eq. (27). However, this is highly nontrivial
because the general perturbative structures of the functions
H�

a and Z��;a, whose knowledge is required for the resum-

mation, are not known. Fortunately, general assumptions
and approximations can be made to improve them. Firstly,
it is a well-known fact that the plus components by them-
selves represent the dominant contributions for both the
gluon and the quark multiplicities (see, e.g., Refs. [19,20]).
Secondly, Eq. (25) tells us that D�

g is suppressed with

respect to D�
s because �! � 1þOð!Þ. These two facts

suggest that keeping r�ðQ2Þ ¼ 0 even at higher orders
should still represent a good approximation. Then we
notice that higher-order corrections to ~D�

a ð0; Q2
0Þ and

H�
a ð0; Q2Þ just represent a redefinition of D�

a ð0; Q2
0Þ apart

from running-coupling effects starting at order a2s .
Therefore, we assume that these corrections can be
neglected. Now we can finally discuss higher-order correc-
tions to rþðQ2Þ, which represents the ratio of the pure
plus components. Accordingly, we can intepret the
result in Eq. (5) of Ref. [7] as higher-order corrections to
Eq. (24). This interpretation is explicitly confirmed up
to order as in Chap. 7 of Ref. [2], where the same set of
equations used in the computation of Ref. [7] are also
obtained. Further arguments to support it and its scheme
dependence will be discussed in Ref. [16]. We denote the
approximation in which Eqs. (19) and (27) are used as
LOþ NNLL and the one in which rþðQ2Þ in Eq. (27) is

replaced by the result of Eq. (5) in Ref. [7] up to order a3=2s

as NNNLOapprox þ NNLL. That this last one is actually a

good approximation will be shown below. In both approx-
imations considered, we can summarize the main theoreti-
cal result of this Letter in the following way:

hnhðQ2Þig¼Dgð0;Q2
0ÞT̂resþ ð0;Q2;Q2

0Þ; (28)

hnhðQ2Þis¼Dgð0;Q2
0Þ
T̂resþ ð0;Q2;Q2

0Þ
rþðQ2Þ

þ
�
Dsð0;Q2

0Þ�
Dgð0;Q2

0Þ
rþðQ2

0Þ
�
T̂res� ð0;Q2;Q2

0Þ; (29)

for the multiplicities, and

rðQ2Þ � hnhðQ2Þig
hnhðQ2Þis

¼ rþðQ2Þ�
1þ rþðQ2Þ

rþðQ2
0
Þ

�
Dsð0;Q2

0ÞrþðQ2
0Þ

Dgð0;Q2
0
Þ � 1

�
T̂res� ð0;Q2;Q2

0Þ
T̂res
þ ð0;Q2;Q2

0Þ

� ; (30)

for the gluon-quarkmultiplicity ratio. Equations (28) and (29)
depend only on two parameters, Dgð0; Q2

0Þ and Dsð0; Q2
0Þ,

with a simple physical interpretation: they are just the gluon
and the quark multiplicities at the arbitrary scaleQ0.
We have performed a global fit of our resummed for-

mulas, Eqs. (28) and (29), to the experimental data to
extract the values of Dgð0; Q2

0Þ and Dsð0; Q2
0Þ. With Q0 ¼

50 GeV, the result of the fit is given by

Dgð0; Q2
0Þ ¼ 24:31� 0:85; 90%C:L:;

Dsð0; Q2
0Þ ¼ 15:49� 0:90; 90%C:L:;

(31)

in the LOþ NNLL case, and by

Dgð0; Q2
0Þ ¼ 24:02� 0:36; 90%C:L:;

Dsð0; Q2
0Þ ¼ 15:83� 0:37; 90%C:L:;

(32)

in the NNNLOapprox þ NNLL case, in agreement with the

experimental values within the errors. However, the 90%
C.L. error in the NNNLOapprox þ NNLL case is much

smaller, reflecting a much better fit to the data at all
energies. Indeed, per degree of freedom, we obtain �2 ¼
18:09 in the LOþ NNLL case, while we have �2 ¼ 3:71
in the NNNLOapprox þ NNLL case. In our analysis, we

have used the next-to-leading-order solution for the run-
ning coupling according to Eq. (13) with �sðMZÞ ¼ 0:118
and nf ¼ 5. We have checked that varying the arbitrary

scale Q2
0 does not change the resulting value of �2 as

expected and that moving from LL to NNLL the renormal-
ization scale dependence is strongly reduced.
In Fig. 1, we plot the gluon and quark multiplicities

according to Eqs. (26), (28), and (29) using the fitted
parameters given in Eqs. (31) and (32). Using the data
selection of Ref. [21], the measurements are taken from
Refs. [21–24] for the gluon multiplicity and from
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Refs. [25,26] and references therein for the quark multi-
plicity. The result of a fit where the normalization coeffi-
cients are assumed constant without any additional
constraint is also plotted showing that NNNLOapprox þ
NNLL is indeed a good approximation. To check the
consistency of the data sets, we have used Eq. (30) together
with the result of the fit from the gluon and quark multi-
plicities in Eqs. (31) and (32) to predict the gluon-quark
multiplicity ratio. The result together with the correspon-
ding data are shown in Fig. 2. The data are taken from
Refs. [21,22,25–30] and references therein, covering
essentially all available measurements. One can see that
the data do not agree very well at small scales, an issue that
will be discussed elsewhere [16].

As concluding remarks, we remind the reader here that
the main problem in describing the data was that the theory
failed badly in the description of the data for the gluon and
the quark jets simultaneously (or equivalently for the ratio
r) even if the perturbative series seems to converge very
well. We have shown in this Letter that ourNNNLOapprox þ
NNLL result solves this problem, explaining the discrep-
ancy of the results with the data obtained in Ref. [7] as due
to the absence of the singlet ‘‘minus’’ component governed

by T̂res� ð0; Q2; Q2
0Þ in Eqs. (29) and (30). This component is

included here for the first time. The most natural possible
future improvement consists in including corrections of
next-to-leading order or beyond to r�ðQ2Þ. Our generalized
result depends on two parameters, which represent our
initial condition. They have been fixed performing a fit
and have a simple physical meaning because they just
represent the gluon and the quark multiplicities at a certain
arbitrary scale Q0. We hope that additional measurements
of these observables will come from the LHC to test our
results on a much wider energy range.
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