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We carry out the first complete calculation of kinematic power corrections �t=Q2 and �m2=Q2 to the

helicity amplitudes of deeply virtual Compton scattering. This result removes an important source of

uncertainties in the quantum chromodynamics predictions for intermediate momentum transfers

Q2 � 1–10 GeV2 that are accessible in the existing and planned experiments. In particular, the finite-t

corrections are significant and must be taken into account in the data analysis.
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Deeply virtual Compton scattering (DVCS) is the sim-
plest process that gives access to generalized parton dis-
tributions (GPDs) and is receiving a lot of attention [1,2].
The existing experimental results come from HERMES
and Jefferson Lab (Hall A and CLAS) and many more
measurements are planned after the Jefferson Lab 12 GeV
upgrade and at COMPASS-II at CERN. Since the bulk of
the existing and expected data is for photon virtualities
Q2 < 5 GeV2, corrections of the type m2=Q2, t=Q2, where
m is the target (nucleon) mass and t ¼ ðp0 � pÞ2 is the
momentum transfer to the target, can have significant
impact on the data analysis and should be taken into
account. The finite-t corrections are of particular impor-
tance if one wants to study the three-dimensional picture of
the proton in longitudinal and transverse plane [3], in
which case the t dependence has to be measured in a
sufficiently broad range.

The necessity of taking into account kinematic power
corrections to DVCS is widely acknowledged [2,4–15].
Early attempts to calculate such corrections by analogy to
Nachtmann corrections [16] to the structure functions in
deep-inelastic lepton-nucleon scattering produced results
that were not gauge invariant and not translation invariant
with respect to the choice of the positions of the electromag-
netic currents. The reason is that in addition to Nachtmann-
type contributions related to subtraction of traces in the
leading-twist operators one must take into account their
higher-twist descendants obtained by adding total deriva-
tives: O1 � @2O�1;...;�n

and O2 � @�1O�1;...;�n
, where

O�1;...;�n
are the usual leading-twist operators. The problem

arises because matrix elements of the operator O2 on free
quarks vanish [17]. Thus, in order to find its leading-order
coefficient function in the operator product expansion of two
electromagnetic currents one is forced to consider either
more complicated (quark-antiquark-gluon)matrix elements,
or staywith the quark-antiquark ones but go over to the next-
to-leading order in�s. In both cases the real difficulty is not
the calculation of the relevant Feynman diagrams, but the
necessity to separate the contribution of interest from the
‘‘genuine’’ quark-gluon twist-four operators.

This problem was solved in Refs. [18,19] using confor-
mal symmetry, which implies that coefficient functions of
‘‘kinematic’’ and ‘‘genuine’’ twist-four operators are mutu-
ally orthogonal with a proper weight function [20,21].
Using this approach we have calculated in Ref. [21] the
finite-t and target-mass corrections to DVCS for the study
case of a scalar target. We verified gauge invariance and
translation invariance and, most importantly, found that the
structure of kinematic corrections proves to be consistent
with collinear factorization. In this Letter we present our
final results for the helicity amplitudes of DVCS to the
1=Q2 accuracy for the physically interesting case of the
spin-1=2 (nucleon) target. This result removes one impor-
tant source of uncertainties in the QCD predictions for
intermediate photon virtualities that are accessible in the
existing and planned experiments.
The DVCS amplitude ��ðqÞ þ NðpÞ ! �ðq0Þ þ Nðp0Þ is

defined by the matrix element of the time-ordered product
of two electromagnetic currents, sandwiched between the
nucleon states

i
Z

d4x
Z

d4ye�iqxþiq0yhp0jTfjem� ðxÞjem� ðyÞgjpi
¼ ð2�Þ4�ðpþ q� p0 � q0ÞA��ðq; q0; pÞ: (1)

Introducing the photon polarization vectors ð"�;0qÞ ¼ 0,
ð"�q0Þ ¼ 0 (see below) one can write A�� in terms of

helicity amplitudes

A�� ¼ "þ�"�� Aþþ þ "��"þ� A�� þ "0�"
�
� A0þ

þ "0�"
þ
� A0� þ "þ�"þ� Aþ� þ "��"�� A�þ

þ q0�A
ð3Þ
� : (2)

The last term�q0� is of no interest as it does not contribute
to any observable.
The helicity-conserving amplitudes are the leading ones

in the scaling limit A�� �OðQ0Þ, and the helicity-flip
amplitudes are power suppressed: A0� �OðQ�1Þ, A�� �
OðQ�2Þ. Thus, in order to calculate physical observables to
the 1=Q2 accuracy one has to take into account 1=Q2
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corrections to Aþþ and A��, whereas for the helicity-flip
amplitudes the leading power accuracy is sufficient.

The definition of helicity amplitudes depends on a par-
ticular choice of the polarization vectors, i.e., on the refer-
ence frame. We use the photon momenta q and q0 to define
a longitudinal plane spanned by the two lightlike vectors

n ¼ q0; ~n ¼ �qþ ð1� �Þq0; (3)

where � ¼ t=ðQ2 þ tÞ, Q2 ¼ �q2. For this choice the
momentum transfer to the target � ¼ p0 � p ¼ q� q0,
t ¼ �2 is purely longitudinal and the target (proton)
momenta have a nonzero transverse component

jP?j2 ¼ �m2 � t

4

1� �2

�2
�OðQ0Þ; (4)

where P ¼ ðpþ p0Þ=2 and the skewedness parameter is
defined as � ¼ �ð� � q0Þ=½2ðP � q0Þ�.

The condition jP?j2 > 0 translates to the lower bound
jtj> jtminj ¼ 4m2�2=ð1� �2Þ, cf. Ref. [2].

We choose the polarization vectors as follows (cf. a
detailed discussion in Sec. IIb in Ref. [21])

"0� ¼ �ðq� � q0�q2=ðqq0ÞÞ=
ffiffiffiffiffiffiffiffiffiffi
�q2

q
;

"�� ¼ ðP?
� � i �P?

� Þ=ð
ffiffiffi
2

p jP?jÞ;
(5)

where P?
� ¼ g?��P

�, �P?
� ¼ 	?��P

�, and

g?�� ¼ g�� � ðq�q0� þ q0�q�Þ=ðqq0Þ þ q0�q0�q2=ðqq0Þ2;
	?�� ¼ 	���
q

�q0
=ðqq0Þ; 	0123 ¼ 1:
(6)

Each helicity amplitude involves the sum over quark fla-
vors A ¼ P

e2qAq, where eq is the quark electromag-

netic charge, and is written in terms of the leading-twist

GPDs Hq, Eq, ~Hq, ~Eq. For the GPD definitions we follow
Ref. [1].
The calculation is similar to the case of the scalar target

considered in Ref. [21] so that in this Letter we only
present the final expressions. Note that the electromagnetic
gauge invariance is guaranteed to twist-four accuracy
already on the operator level and is embedded in the
definition of helicity amplitudes. The translation invari-
ance [independence on the shift of the positions of the
electromagnetic currents in Eq. (1): x ! xþ �, y ! yþ
�] is nontrivial and provides a strong check of the calcu-
lation, see Ref. [21]. The results can conveniently be
written in terms of the vector and axial-vector bispinors

v� ¼ �uðp0Þ��uðpÞ; a� ¼ �uðp0Þ���5uðpÞ: (7)

We define v�
? ¼ ðv � "�Þ, a�? ¼ ða � "�Þ, P�

? ¼ ðP � "�Þ.
Although Pþ

? ¼ P�
? ¼ jP?j=

ffiffiffi
2

p
, we prefer this notation to

keep trace of the polarization vectors. We also use a short-
hand notation

Xqðx; �; tÞ ¼ Hqðx; �; tÞ þ Eqðx; �; tÞ (8)

and rewrite the helicity-conserving amplitudes in terms of
the vector- and axial-vector invariant functions as

1

2
ðAþþ

q þA��
q Þ ¼ ðvPÞ

2m2
Vq

1 þ
ðvq0Þ
ðqq0ÞV

q
2 ; (9)

1

2
ðAþþ

q �A��
q Þ ¼ ða�Þ

4m2
Aq

1 þ
ðaq0Þ
ðqq0ÞA

q
2 : (10)

The following expressions for Vq
k , A

q
k present our main

result:

Vq
1 ¼

�
1� t

2Q2

�
Eq � C�

0 þ t

Q2
Eq � C�

1 � 2

Q2

�
t

�
þ 2jP?j2�2@�

�
�2@�E

q � C�
2 þ 8m2

Q2
�2@��X

q � C�
2 ; (11a)

Vq
2 ¼

�
1� t

2Q2

�
�Xq � C�

0 þ t

Q2
�Xq � C�

1 � 4

Q2

��
jP?j2�2@� þ t

�

�
�2@� � t

2

�
�Xq � C�

2 ; (11b)

Aq
1 ¼

�
1� t

2Q2

�
� ~Eq � Cþ

0 þ t

Q2
� ~Eq � Cþ

1 � 2

Q2

�
t

�
þ 2jP?j2�2@�

�
�2@�� ~E

q � Cþ
2 þ 8m2

Q2
�2@� ~H

q � Cþ
2 ; (11c)

Aq
2 ¼

�
1� t

2Q2

�
� ~Hq � Cþ

0 þ t

Q2
� ~Hq � Cþ

1 � 4

Q2

��
jP?j2�2@� þ t

�

�
�2@� � t

2

�
� ~Hq � Cþ

2 : (11d)

In addition, for the helicity-flip amplitudes we obtain

A0;�
q ¼ 2

Q

��
v�
? � 4P�

?
ðvq0Þ
Q2

�2@�

�
�Xq � C�

1 �
�
a�? � 4P�

?
ðaq0Þ
Q2

�2@�

�
� ~Hq � Cþ

1 þ P�
?
ðvPÞ
m2

�2@�E
q � C�

1

� P�
?
ða�Þ
2m2

�2@�� ~E
q � Cþ

1

�
(12)
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and

A��
q ¼ � 8P�

?
Q2

��
v�
? � 2P�

?
ðvq0Þ
Q2

�2@�

�
�2@�X

q � ½xC�
1 � �

�
a�? � 2P�

?
ðaq0Þ
Q2

�2@�

�
�2@�� ~Hq � Cþ

1

þ P�
?
ðvPÞ
2m2

�3@2�E
q � ½xC�

1 � � P�
?
ða�Þ
4m2

�3@2��
2 ~Eq � Cþ

1

�
: (13)

The notation F � C stands for the convolution of a GPD F
with a coefficient function C:

F � C 	
Z

dxFðx; �; tÞCðx; �Þ:

The derivative @� ¼ @=@� acts onto the full expression to
the right, i.e., both on GPDs and coefficient functions. The
coefficient functions C�

k ðx; �Þ are given by the following
expressions:

C�
0 ðx; �Þ ¼

1

�þ x� i	
� 1

�� x� i	
;

C�
1 ðx; �Þ ¼

1

x� �
ln

�
�þ x

2�
� i	

�
� ðx $ �xÞ;

C�
2 ðx; �Þ ¼

�
1

�þ x

�
Li2

�
�� x

2�
þ i	

�
� Li2ð1Þ

�

� ðx $ �xÞ
�
þ 1

2
C�
1 ðx; �Þ:

(14)

Note that C�
0 have simple poles at x ¼ ��, whereas C�

1;2

have a milder (logarithmic) singularity at the same points.
This ensures that the kinematic power corrections are
factorizable, at least to the leading order in �s. In the
DVCS kinematics

ðvq0Þ � ðaq0Þ ¼ OðQ2Þ; ðvPÞ � ða�Þ ¼ OðQ0Þ (15)

so that the helicity-conserving amplitudes (11a)–(11d) in-
clude leading contributions Oð1=Q0Þ and the corrections
Oð1=Q2Þ, whereas all terms in Eqs. (12) and (13) are of the
orderOð1=QÞ andOð1=Q2Þ, respectively, as expected. The
main difference to our results [21] for the scalar target [22]
is the appearance of a large target mass correction to the
contribution of the GPD Eq ( ~Eq) that involves Xq ( ~Hq), cf.
the last term in the first line of Eq. (11a) [Eq. (11c)].

We emphasize that our full result for the DVCS ampli-
tude (2) is gauge invariant and translation invariant to the
stated 1=Q2 accuracy. To this end the contribution of twist-
four operators to the helicity-conserving amplitude plays
the crucial role. Helicity-flip amplitudes only receive twist-
two and twist-three contributions and have been calculated
before [8–10]. To make a comparison, one has to take into
account the difference in conventions for the photon po-
larization vectors. For example, our definition of the single

helicity flip amplitudes A0;�
q differs from Ref. [9] by a

term proportional to the leading-order helicity-conserving
amplitude. With this correction, the results coincide. Our
result for the double-flip amplitude in Eq. (13) does not
agree, however, with the expression derived in Ref. [10].

It has become customary to parametrize the DVCS
amplitude (2) in terms of the so-called Compton form

factors (CFFs) H , E, ~H , ~E [2]

A �� ¼� g?��

2ðPq0Þ
�
ð �u6q0uÞH þ i

2m
ð �u���q0���uÞE

�

þ i	?��

2ðPq0Þ
�
ð �u6q0�5uÞ ~H þðqq0Þ

2m
ð �u�5uÞ~E

�
þ��� :

In our notation

H ¼ V1 � V2=�; E ¼ �V1;

~H ¼ A2=�; ~E ¼ A1=�;
(16)

where Vk ¼
P

qe
2
qV

q
k , etc.

A detailed study of the numerical impact of the kine-
matic corrections on different DVCS observables goes
beyond the tasks of this Letter. For orientation, we have
calculated the corrections to the imaginary parts of the
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FIG. 1 (color online). The coefficients cHt ð�; tÞ (upper panel)
and cHm ð�; tÞ (lower panel) for different values of t (in GeV2).
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CFFs H and E which involve the GPDs in the x > �
region only. To this end we use the GPD model of
Refs. [23,24]:(

Hq

Eq

)
ðx; �; tÞ ¼

Z
d


Z
d��ðx� 
� ��Þfqð
;�; tÞ;

where the double distribution fq is written as

fqð
;�; tÞ ¼ hð
;�Þj
j��0tqð
Þ
(
1

�qð1� 
Þ
q=Aq

:

Here qð
Þ is the MRST2002 next-to-next-to-leading-order
valence u- and d-quark distribution [25] and the profile
function h is given by the following expression:

hð
;�Þ ¼ 3

4
½ð1� j
jÞ2 � �2�=ð1� j
jÞ3;

where ku ’ 1:7 and kd ’ �2:0 are the anomalous magnetic
moments, 
u ’ 1:7 and 
d ’ 0:57 [24], and finally Aq ¼R
d
ð1� 
Þ
qqð
Þ. We consider the following ratios:

ImF � ImF LO

ImF LO
¼ t

Q2
cFt ð�; tÞ þm2

Q2
cFm ð�; tÞ; (17)

where F ¼ fH ; Eg,
ImH LO ¼ �

X
q

e2q½Hqð��; �; tÞ �Hqð�; �; tÞ�; (18)

and similar for ImELO. The coefficients cFt ð�; tÞ depend on
t because of the nonfactorizable t dependence of the GPDs
through the Regge trajectory.

In Fig. 1 we show cHt ð�; tÞ and cHm ð�; tÞ as a function of
� for several t values: �t ¼ 0, 0.5, 1.0, 1:5 GeV2. The
same is shown in Fig. 2 for cEt ð�; tÞ and cEmð�; tÞ. One sees
that the corrections to E are in general larger than for the
H form factor; in particular, E receives a relatively large
proton mass correction.
Finally, note that the finite-t correction depends on the

definition of the skewedness parameter �, which is not
unique. If one defines � through the Bjorken xB parameter,
�B ¼ xB=ð2� xBÞ, which seems to be natural from the
experimental point of view (the relation of ‘‘our’’ � to �B

is given in Eq. (125) in Ref. [21]), cH ;E
t ð�; tÞ change

accordingly, but in general do not become smaller.
To summarize, in this Letter we have calculated, for the

first time, the kinematic power corrections �t=Q2 and
�m2=Q2 to the helicity amplitudes of deeply virtual
Compton scattering. These corrections are important for
intermediate momentum transfers Q2 � 1–10 GeV2 that
are accessible in the existing and planned experiments,
and have to be taken into account in the data analysis. In
particular, the finite-t corrections are indispensable if one
aims to study ‘‘holographic’’ images of the proton in the
transverse plane, in which case the t dependence must be
measured in a broad range.
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